I have a database where I query for this kind of result with panda read_sql (millions results by query), Id is linked to an other table .
ID | Date | Value |
---|---|---|
369 | 2021-06-15 13:06:54 | 0.33 |
370 | 2021-06-15 13:06:54 | 0.02 |
377 | 2021-06-15 13:06:54 | 0.30 |
378 | 2021-06-15 13:06:54 | 0.36 |
390 | 2021-06-15 13:06:54 | 535.27 |
391 | 2021-06-15 13:06:54 | 35.55 |
264 | 2021-06-15 13:06:55 | 3.29 |
265 | 2021-06-15 13:06:55 | 5.70 |
266 | 2021-06-15 13:06:55 | 6.37 |
267 | 2021-06-15 13:06:55 | 23.36 |
268 | 2021-06-15 13:06:55 | 25.44 |
269 | 2021-06-15 13:06:55 | 23.80 |
270 | 2021-06-15 13:06:55 | 26.86 |
271 | 2021-06-15 13:06:55 | 22.54 |
272 | 2021-06-15 13:06:55 | 25.24 |
Is there a way to create a column by Id with the Date as unique Index in a pandas dataframe with value = None if there is no entry for this date like :
Date | 369 | 370 | 377 | ... | 272 |
---|---|---|---|---|---|
2021-06-15 13:06:54 | 0.33 | 0.02 | 0.30 | ... | None |
2021-06-15 13:06:55 | None | None | None | ... | 25.24 |
CodePudding user response:
Use pivot_table
:
df.pivot_table('Value', 'Date', 'ID')