I have data that I've extracted from a site called "Redcap", the data looks like this on Redcap:
I.e. it was one "question" that respondents could pick multiple answers for, but they all got graphed together. To reiterate, the answers were NOT mutually exclusive.
Here's a sample of the de-identified data:
df<-structure(list(improvement___1 = c(1, 0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), improvement___2 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1), improvement___3 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), improvement___4 = c(1,
0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1), improvement___5 = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0), improvement___6 = c(0,
1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1), improvement___7 = c(0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0), improvement___8 = c(0,
1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 1), improvement___9 = c(1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), improvement___10 = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0), AgeGroups = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 3L,
1L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 3L, 2L, 2L, 3L, 2L, 2L, 3L,
3L, 1L, 2L, 3L, 1L, 2L, 1L), .Label = c("Young", "Middle", "Old"
), class = "factor")), row.names = c(NA, -46L), class = c("tbl_df",
"tbl", "data.frame"))
Because respondents could pick multiple answers, each answer is really its own variable and when exported, I get a column for each (Improvment_1 is the first row, improvement_2 the second, etc..). I'd like to create a graph, almost identical to the one I pasted, but faceted by the other variable I included: "AgeGroup". So it'd look like this (pardon my msPaint skills):
I'm struggling with how I would include 10 different "improvement" variables on the same graph.
CodePudding user response:
library(tidyverse)
df %>%
pivot_longer(-AgeGroups) %>%
mutate(name = fct_inorder(name) %>% fct_rev) %>%
count(AgeGroups, name, wt = value) %>%
ggplot(aes(n, name))
geom_col()
facet_wrap(~AgeGroups)
CodePudding user response:
I admire your MS paint skills. Is this what you are looking for?
library(tidyverse)
df_new <- df %>%
pivot_longer(-AgeGroups, "improvement")
ggplot(df_new)
aes(x = improvement, weight = value)
geom_bar(fill = "#112446")
coord_flip()
theme_minimal()
facet_wrap(vars(AgeGroups))