I am following the accepted answer of this thread using my ownd gridded data.
I load it as:
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
import pylab as py
token = open('Ydata_48_of_50.txt','r')
linestoken=token.readlines()
tokens_column_numberX = 0
resulttokenX=[]
for x in linestoken:
resulttokenX.append(x.split()[tokens_column_numberX])
token.close()
resulttokenX = np.array(resulttokenX)
(I do the same for Y and F(X, Y)) and then, I use what is displayed in the aforementioned link:
xi, yi = np.linspace(resulttokenX.min(), resulttokenX.max(), 200), np.linspace(resulttokenY.min(), resulttokenY.max(), 200)
xi, yi = np.meshgrid(xi, yi)
# Interpolate
rbf = scipy.interpolate.Rbf(resulttokenX, resulttokenY, resulttokenF, function='linear')
Unfortunately, the last line here is an error. I get
xi, yi = np.linspace(resulttokenX2.min(), resulttokenX2.max(), 200), np.linspace(resulttokenY2.min(), resulttokenY2.max(), 200)
File "D:\Users\me\anaconda3\lib\site-packages\numpy\core\_methods.py", line 43, in _amin
return umr_minimum(a, axis, None, out, keepdims, initial, where)
TypeError: cannot perform reduce with flexible type
I have no idea why this happens, since in the original code x
appears in the last line and is
type(x)
Out[26]: numpy.ndarray
which is the same type of variable as
type(resulttokenX2)
Out[24]: numpy.ndarray
I don't know why this happens. Can someone tell me what I have to do to reproduce the original code with my gridded data instead of random?
Thanks.
Edit:
resulttokenY2
Out[3]:
array(['3.2000000e 01', '3.2000000e 01',
are the first lines of resulttokenY2
CodePudding user response:
After some very helpful advice from Yann ziselman I have managed to do it. This is the full code:
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
import pylab as py
import scipy
token = open('Ydata_48_of_50.txt','r')
linestoken=token.readlines()
tokens_column_numberX = 0
tokens_column_numberY = 1
tokens_column_numberF = 2
resulttokenX=[]
resulttokenY=[]
resulttokenF=[]
for x in linestoken:
resulttokenX.append(x.split()[tokens_column_numberX])
resulttokenY.append(x.split()[tokens_column_numberY])
resulttokenF.append(x.split()[tokens_column_numberF])
token.close()
resulttokenX2 = np.array(resulttokenX)
resulttokenY2 = np.array(resulttokenY)
resulttokenF2 = np.array(resulttokenF)
# Set up a regular grid of interpolation points
xi, yi = np.linspace(resulttokenX2.astype('float').min(), resulttokenX2.astype('float').max(), 100), np.linspace(resulttokenY2.astype('float').min(), resulttokenY2.astype('float').max(), 100)
xi, yi = np.meshgrid(xi, yi)
# Interpolate
rbf = scipy.interpolate.Rbf(resulttokenX2, resulttokenY2, resulttokenF2, function='linear')
zi = rbf(xi, yi)
plt.imshow(zi, vmin=resulttokenF2.astype('float').min(), vmax=resulttokenF2.astype('float').max(), origin='lower', extent=[resulttokenX2.astype('float').min(), resulttokenX2.astype('float').max(), resulttokenY2.astype('float').min(), resulttokenY2.astype('float').max()])
plt.scatter(resulttokenX2.astype('float'), resulttokenY2.astype('float'), c=resulttokenF2.astype('float'))
plt.colorbar()
plt.show()