I use a sklearn LinearRegression()
estimator, with 5 variables
['feat1', 'feat2', 'feat3', 'feat4', 'feat5']
In order to predict a continuous value.
Estimator returns the list of coefficient values and the bias:
linear = LinearRegression()
print(linear.coef_)
print(linear.intercept_)
[ 0.18799409 -0.05406106 -0.01327966 -0.13348129 -0.00614054]
-0.011064865422734674
Then, given the fact I have each feature as variables, I can hardcode the coefficients into a linear formula and estimate my values, like so:
val = ((0.18799409*feat1) - (0.05406106*feat2) - (0.01327966*feat3) - (0.13348129*feat4) - (0.00614054*feat5)) -0.011064865422734674
Now lets say I use a polynomial regression of degree 2, using a pipeline, and by printing:
model = Pipeline(steps=[
('scaler',StandardScaler()),
('polynomial_features', PolynomialFeatures(degree=degree, include_bias=False)),
('linear_regression', LinearRegression())])
#fit model
model.fit(X_train, y_train)
print(model['linear_regression'].coef_)
print(model['linear_regression'].intercept_)
I get:
[ 7.06524186e-01 -2.98605001e-02 -4.67175212e-02 -4.86890790e-01
-1.06320101e-02 -2.77958604e-03 -3.38253025e-04 -7.80563090e-03
4.51356888e-03 8.32036733e-03 3.57638244e-02 -2.16446849e-02
-7.92169287e-02 3.36809467e-02 -6.60531497e-03 2.16613331e-02
2.10097993e-02 3.49970303e-02 -3.02970698e-02 -7.81462599e-03]
0.011042927069084668
How do I transform the formula above in order to calculate val
from regression, with values from .coef_
and .intercept_
, using array indexing instead of hardcoding the values, for any 'n' degree ?
Is there any scipy
or numpy
method suited for that?
CodePudding user response:
It's important to note that polynomial regression is just an extended case of linear regression, thus all we need to do is transform our input data consistently. For any N we can use the PolynomialFeatures
from sklearn.preprocessing.
From using dummy data, we can see how this would work:
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
#set parameters
X = np.stack([np.arange(i,i 10) for i in range(5)]).T
Y = np.random.randn(10)*10 3
N = 2
poly_reg=PolynomialFeatures(degree=N,include_bias=False)
X_poly=poly_reg.fit_transform(X)
#print(X[0],X_poly[0]) #to check parameters, note that it includes the y intercept as an input of 1
poly = LinearRegression().fit(X_poly, Y)
And thus, we can get the coef_ the way you were doing before, and simply perform a matrix multiplication to get the regressed value.
new_dat = poly_reg.transform(np.arange(2,2 10,2)[None]) #5 new datapoints
np.testing.assert_array_equal(poly.predict(new_dat),new_dat @ poly.coef_ poly.intercept_)
----EDIT----
In case you cannot use the transform for PolynomialFeatures, it's just a iterated combination loop to generate the data from your list of features.
new_feats = np.array([feat1,feat2,feat3,feat4,feat5])
from itertools import combinations_with_replacement
def gen_poly_feats(x,N):
#this function returns all unique groupings (w/ replacement) of the indices into the array x for use in polynomial regression.
return np.concatenate([[np.product(x[np.array(i)]) for i in list(combinations_with_replacement(range(len(x)), n))] for n in range(1,N 1)])[None]
new_feats_poly = gen_poly_feats(new_feats,N)
# just to be sure that this matches...
np.testing.assert_array_equal(new_feats_poly,poly_reg.transform(new_feats[None]))
#then we can use the above linear regression model to predict the new data
val = new_feats_poly @ poly.coef_ poly.intercept_