I'm working on a simple mlp model. The input shape for model fitting is here.
fea_train_np.shape = (6000, 1, 15, 21, 512)
fea_val_np.shape = (1500, 1, 15, 21, 512)
y_train_np.shape = (6000, 2)
y_val_np.shape = (1500, 2)
And here is the mlp I'm working on. The last layer using linear activation as I want to do regression instead of classification.
mlp1 = keras.Sequential(
[
layers.Flatten(),
layers.Dense(256, activation='relu'), # Add a fully-connecte layer with 16 units and relu activation function as the hidden layer
layers.Dense(10, activation='linear')
],
)
mlp1.compile(optimizer = optimizers.Adam(learning_rate = 0.001),
loss = keras.losses.MeanSquaredError(),
metrics = [keras.metrics.MeanSquaredError()])
mlp = mlp1.fit(fea_train_np, y_train_np, epochs=20, batch_size=8, validation_data=(fea_val_np, y_val_np))
result = mlp.predict(fea_val_np, y_val_np)
And I got this error when I was trying to fit my model:
Train on 6000 samples, validate on 1500 samples
Epoch 1/20
8/6000 [..............................] - ETA: 12s
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1618 try:
-> 1619 c_op = c_api.TF_FinishOperation(op_desc)
1620 except errors.InvalidArgumentError as e:
InvalidArgumentError: Dimensions must be equal, but are 10 and 2 for 'loss/output_1_loss/SquaredDifference' (op: 'SquaredDifference') with input shapes: [8,10], [8,2].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-32-37335a6a8cd3> in <module>
11 metrics = [keras.metrics.MeanSquaredError()])
12
---> 13 mlp = mlp1.fit(fea_train_np, y_train_np, epochs=20, batch_size=8, validation_data=(fea_val_np, y_val_np))
14 result = mlp.predict(fea_val_np, y_val_np)
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
817 max_queue_size=max_queue_size,
818 workers=workers,
--> 819 use_multiprocessing=use_multiprocessing)
820
821 def evaluate(self,
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
340 mode=ModeKeys.TRAIN,
341 training_context=training_context,
--> 342 total_epochs=epochs)
343 cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
344
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
126 step=step, mode=mode, size=current_batch_size) as batch_logs:
127 try:
--> 128 batch_outs = execution_function(iterator)
129 except (StopIteration, errors.OutOfRangeError):
130 # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in execution_function(input_fn)
96 # `numpy` translates Tensors to values in Eager mode.
97 return nest.map_structure(_non_none_constant_value,
---> 98 distributed_function(input_fn))
99
100 return execution_function
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\def_function.py in __call__(self, *args, **kwds)
566 xla_context.Exit()
567 else:
--> 568 result = self._call(*args, **kwds)
569
570 if tracing_count == self._get_tracing_count():
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\def_function.py in _call(self, *args, **kwds)
613 # This is the first call of __call__, so we have to initialize.
614 initializers = []
--> 615 self._initialize(args, kwds, add_initializers_to=initializers)
616 finally:
617 # At this point we know that the initialization is complete (or less
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
495 self._concrete_stateful_fn = (
496 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 497 *args, **kwds))
498
499 def invalid_creator_scope(*unused_args, **unused_kwds):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2387 args, kwargs = None, None
2388 with self._lock:
-> 2389 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2390 return graph_function
2391
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\function.py in _maybe_define_function(self, args, kwargs)
2701
2702 self._function_cache.missed.add(call_context_key)
-> 2703 graph_function = self._create_graph_function(args, kwargs)
2704 self._function_cache.primary[cache_key] = graph_function
2705 return graph_function, args, kwargs
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2591 arg_names=arg_names,
2592 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2593 capture_by_value=self._capture_by_value),
2594 self._function_attributes,
2595 # Tell the ConcreteFunction to clean up its graph once it goes out of
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
976 converted_func)
977
--> 978 func_outputs = python_func(*func_args, **func_kwargs)
979
980 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\eager\def_function.py in wrapped_fn(*args, **kwds)
437 # __wrapped__ allows AutoGraph to swap in a converted function. We give
438 # the function a weak reference to itself to avoid a reference cycle.
--> 439 return weak_wrapped_fn().__wrapped__(*args, **kwds)
440 weak_wrapped_fn = weakref.ref(wrapped_fn)
441
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in distributed_function(input_iterator)
83 args = _prepare_feed_values(model, input_iterator, mode, strategy)
84 outputs = strategy.experimental_run_v2(
---> 85 per_replica_function, args=args)
86 # Out of PerReplica outputs reduce or pick values to return.
87 all_outputs = dist_utils.unwrap_output_dict(
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in experimental_run_v2(self, fn, args, kwargs)
761 fn = autograph.tf_convert(fn, ag_ctx.control_status_ctx(),
762 convert_by_default=False)
--> 763 return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
764
765 def reduce(self, reduce_op, value, axis):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in call_for_each_replica(self, fn, args, kwargs)
1817 kwargs = {}
1818 with self._container_strategy().scope():
-> 1819 return self._call_for_each_replica(fn, args, kwargs)
1820
1821 def _call_for_each_replica(self, fn, args, kwargs):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in _call_for_each_replica(self, fn, args, kwargs)
2162 self._container_strategy(),
2163 replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)):
-> 2164 return fn(*args, **kwargs)
2165
2166 def _reduce_to(self, reduce_op, value, destinations):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\autograph\impl\api.py in wrapper(*args, **kwargs)
290 def wrapper(*args, **kwargs):
291 with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
--> 292 return func(*args, **kwargs)
293
294 if inspect.isfunction(func) or inspect.ismethod(func):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in train_on_batch(model, x, y, sample_weight, class_weight, reset_metrics, standalone)
431 y,
432 sample_weights=sample_weights,
--> 433 output_loss_metrics=model._output_loss_metrics)
434
435 if reset_metrics:
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in train_on_batch(model, inputs, targets, sample_weights, output_loss_metrics)
310 sample_weights=sample_weights,
311 training=True,
--> 312 output_loss_metrics=output_loss_metrics))
313 if not isinstance(outs, list):
314 outs = [outs]
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in _process_single_batch(model, inputs, targets, output_loss_metrics, sample_weights, training)
251 output_loss_metrics=output_loss_metrics,
252 sample_weights=sample_weights,
--> 253 training=training))
254 if total_loss is None:
255 raise ValueError('The model cannot be run '
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in _model_loss(model, inputs, targets, output_loss_metrics, sample_weights, training)
165
166 if hasattr(loss_fn, 'reduction'):
--> 167 per_sample_losses = loss_fn.call(targets[i], outs[i])
168 weighted_losses = losses_utils.compute_weighted_loss(
169 per_sample_losses,
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\losses.py in call(self, y_true, y_pred)
219 y_pred, y_true = tf_losses_util.squeeze_or_expand_dimensions(
220 y_pred, y_true)
--> 221 return self.fn(y_true, y_pred, **self._fn_kwargs)
222
223 def get_config(self):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\keras\losses.py in mean_squared_error(y_true, y_pred)
769 y_pred = ops.convert_to_tensor(y_pred)
770 y_true = math_ops.cast(y_true, y_pred.dtype)
--> 771 return K.mean(math_ops.squared_difference(y_pred, y_true), axis=-1)
772
773
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py in squared_difference(x, y, name)
10037 try:
10038 _, _, _op, _outputs = _op_def_library._apply_op_helper(
> 10039 "SquaredDifference", x=x, y=y, name=name)
10040 except (TypeError, ValueError):
10041 result = _dispatch.dispatch(
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\op_def_library.py in _apply_op_helper(op_type_name, name, **keywords)
740 op = g._create_op_internal(op_type_name, inputs, dtypes=None,
741 name=scope, input_types=input_types,
--> 742 attrs=attr_protos, op_def=op_def)
743
744 # `outputs` is returned as a separate return value so that the output
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\func_graph.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
593 return super(FuncGraph, self)._create_op_internal( # pylint: disable=protected-access
594 op_type, inputs, dtypes, input_types, name, attrs, op_def,
--> 595 compute_device)
596
597 def capture(self, tensor, name=None, shape=None):
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\ops.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
3320 input_types=input_types,
3321 original_op=self._default_original_op,
-> 3322 op_def=op_def)
3323 self._create_op_helper(ret, compute_device=compute_device)
3324 return ret
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
1784 op_def, inputs, node_def.attr)
1785 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
-> 1786 control_input_ops)
1787 name = compat.as_str(node_def.name)
1788 # pylint: enable=protected-access
C:\ForHDD\Anaconda\envs\CV\lib\site-packages\tensorflow_core\python\framework\ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1620 except errors.InvalidArgumentError as e:
1621 # Convert to ValueError for backwards compatibility.
-> 1622 raise ValueError(str(e))
1623
1624 return c_op
ValueError: Dimensions must be equal, but are 10 and 2 for 'loss/output_1_loss/SquaredDifference' (op: 'SquaredDifference') with input shapes: [8,10], [8,2].
I tried to change loss = keras.losses.MeanSquaredError()
to loss = [keras.losses.MeanSquaredError()]
and the error keeps the same.
Can someone tell me what I did wrong here? Any suggestion will be appreciated.
CodePudding user response:
I think the problem doesnt have to do with the loss function you use but with the dimensions of the data you use. I see that y_val_np.shape has 2 dimensions (shape[1]), but in the model mlp1 the last layer returns output of 10 dimensions. If this is helpful, and that is what u need to do, i believe changing the dims on the last layer of mlp1 to 2 instead of 10 will solve the problem