So, I have created a derived class template called unorderedSet that uses a pointer member variable to hold the location of an array on the heap (using new).
I am trying to overload the arithmetic operators to find both the intersection and union of two different unorderedSet objects, and the code I have written so far (with the help of another user on this site) manages that. However, upon running the program I get the error in the title. I will post the relevant parts of my code below.
template <class elemType>
class unorderedSet: public unorderedArrayListType<elemType>
{
public:
void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void replaceAt(int location, const elemType& repItem);
const unorderedSet<elemType> operator (const unorderedSet<elemType>&);
// Function to overload the binary operator to find the union of a pair/group of sets
// Postcondition: Finds the union of the sets
const unorderedSet<elemType> operator-(const unorderedSet<elemType>&);
// Function to overload the binary operator - to find the intersection of a pair/group of sets
// Postcondition: Finds the intersection of the sets
unorderedSet(int size = 100);
unorderedSet(const unorderedSet<elemType>& otherSet);
~unorderedSet();
protected:
elemType *set;
int length;
int maxSize;
};
template <class elemType>
const unorderedSet<elemType> unorderedSet<elemType>::operator (const unorderedSet<elemType>& otherSet)
{
unorderedSet<elemType> unSet(this->length otherSet.length); // Initializes new set to hold values of the union set
for (int i = 0; i < this->length; i )
unSet.insertEnd(this->list[i]); // Assigns all values of the activating operand to the union set using insertEnd
for (int i = 0; i < otherSet.length; i )
unSet.insertEnd(otherSet.list[i]); // Calls insertEnd() to both check for duplicate values and add unique values to the union of the sets
return unSet; // Should return the union set, but dumps the core at the moment
} // end operator overload
template <class elemType>
unorderedSet<elemType>::unorderedSet(int size) : unorderedArrayListType<elemType>(size)
{
if (size <= 0)
{
cout << "The array size must be positive. Creating an array of the size 100. " << endl;
this->maxSize = 100;
}
else
this->maxSize = size;
this->length = 0;
set = new elemType[this->maxSize];
}
template <class elemType>
unorderedSet<elemType>::~unorderedSet()
{
delete [] set;
}
template <class elemType>
unorderedSet<elemType>::unorderedSet(const unorderedSet<elemType>& otherSet)
{
this->maxSize = otherSet.maxSize;
this->length = otherSet.length;
set = new elemType[this->maxSize];
for (int j = 0; j < length; j )
set[j] = otherSet.set[j];
}
The following code comes from my test client program.
int main()
{
int intArr1[6] = {0, 1, 2, 3, 4, 5};
unorderedSet<int> testIntSet1;
for (int i = 0; i < (sizeof(intArr1) / sizeof(intArr1[0])); i )
testIntSet1.insertEnd(intArr1[i]);
// Some more code before the function call
int intArr2[6] = {0, 1, 3, 6, 7, 9};
unorderedSet<int> testIntSet2, testIntSet3;
for (int i = 0; i < (sizeof(intArr2) / sizeof(intArr2[0])); i )
testIntSet2.insertEnd(intArr2[i]);
testIntSet3 = testIntSet1 testIntSet2;
// Some more code
}
I also have an assignment operator overload function in the base class of this class's base class. The code is as follows
template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator= (const arrayListType<elemType>& otherList)
{
if (this != &otherList) //avoid self-assignment
{
delete [] list;
this->maxSize = otherList.maxSize;
this->length = otherList.length;
list = new elemType[this->maxSize];
for (int i = 0; i < this->length; i )
list[i] = otherList.list[i];
}
return *this;
}
I have attempted to create another version of this in my unorderedSet class, but when I run it the testIntSet3 variable outputs nothing (not even some random garbage). I decided to remove it since the code seemed to at least function properly before.
CodePudding user response:
One issue is that your orderedSet
is missing the user-defined assignment operator:
template <class elemType>
class unorderedSet: public unorderedArrayListType<elemType>
{
public:
unorderedSet<elemType>& operator=(const unorderedSet<elemType>&);
//...
};
That function needs to be implemented. The simplest way to do that, assuming you have a fully functional, working, copy constructor and destructor for unorderedSet
, would be the following:
template <class elemType>
unorderedSet<elemType>& unorderedSet<elemType>::operator=(const unorderedSet<elemType>& otherSet)
{
if (this != &otherSet)
{
unorderedSet<elemType> temp = otherSet;
std::swap(temp.set, set);
std::swap(temp.length, length);
std::swap(temp.maxSize, maxSize);
}
return *this;
}
This uses the copy-swap idiom.
Your arrayListType
's assignment operator should be written in the same fashipn.
CodePudding user response:
Just to illustrate how valgrind
can be used to diagnose this issue, I converted your program into a more minimal example (Try it online!).
When I run valgrind against the program (compiled as g -g x.cpp
), there is output that reads:
==598== Invalid free() / delete / delete[] / realloc()
==598== at 0x4C3373B: operator delete[](void*) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==598== by 0x108E78: unorderedSet<int>::~unorderedSet() (x.cpp:68)
==598== by 0x108CC7: main (x.cpp:93)
==598== Address 0x5b80630 is 0 bytes inside a block of size 400 free'd
==598== at 0x4C3373B: operator delete[](void*) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==598== by 0x108E78: unorderedSet<int>::~unorderedSet() (x.cpp:68)
==598== by 0x108CBB: main (x.cpp:98)
==598== Block was alloc'd at
==598== at 0x4C3289F: operator new[](unsigned long) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==598== by 0x108E40: unorderedSet<int>::unorderedSet(int) (x.cpp:62)
==598== by 0x108ECC: unorderedSet<int>::operator (unorderedSet<int> const&) (x.cpp:41)
==598== by 0x108C97: main (x.cpp:98)
The valgrind
output is saing that the address being freed points inside an already freed block. Hence, the issue is a double free.
Helpfully, it locates the two distinct locations of the double free.
93 unorderedSet<int> testIntSet2, testIntSet3;
and
98 testIntSet3 = testIntSet1 testIntSet2;
The second free is detected on line 93, so the first one occurred on line 98. We deduce the destruction is from the temporary returned by operator
.
Since the destruction was not expected to trigger a double free, your hypothesis is that the copy was not deep for some reason, and the same pointer was used in the copy that was allocated in the original object.