Consider the following code below:
import tensorflow as tf
input_slice=3
labels_slice=2
def split_window(x):
inputs = tf.slice(x,[0], [input_slice])
labels = tf.slice(x,[input_slice], [labels_slice])
return inputs, labels
dataset = tf.data.Dataset.range(1, 25 1).batch(5).map(split_window)
for i, j in dataset:
print(i.numpy(),end="->")
print(j.numpy())
This code will give me the output:
[1 2 3]->[4 5]
[6 7 8]->[ 9 10]
[11 12 13]->[14 15]
[16 17 18]->[19 20]
[21 22 23]->[24 25]
Every row in the tensor j
represents a feature. I want to find the max value across all features. In this case, it would be 25. How would I find the max value across all features?
CodePudding user response:
One solution to your problem would be to use tf.TensorArray
and tf.reduce_max
:
import tensorflow as tf
input_slice=3
labels_slice=2
def split_window(x):
inputs = tf.slice(x,[0], [input_slice])
labels = tf.slice(x,[input_slice], [labels_slice])
return inputs, labels
dataset = tf.data.Dataset.range(1, 25 1).batch(5).map(split_window)
ta = tf.TensorArray(tf.int64, size=0, dynamic_size=True)
for i, j in dataset:
print(i.shape, i.numpy(),end="->")
print(j.numpy())
ta.write(ta.size(), j)
max_value = tf.reduce_max(ta.stack(), axis=(0, 1).numpy()
print(max_value)
# 25
With tf.reduce_max
you are getting the max value across the dimensions 0 and 1 and reducing your tensor. Feel free to give some feedback, if I did not understand the question correctly.