I am trying to create a function and calculate the inner product using numpy. I got the function to work however I am using explicit numbers in my np.reshape function and I need to make it to use based on input.
my code looks like this:
import numpy as np
X = np.array([[1,2],[3,4]])
Z = np.array([[1,4],[2,5],[3,6]])
# Calculating S
def calculate_S(X, n, m):
assert n == X.shape[0]
n,d1=X.shape
m,d2=X.shape
S = np.diag(np.inner(X,X))
return S
S= calculate_S(X,n,m)
S = S.reshape(2,1)
print(s)
output:
---------------------------------
[[ 5]
[25]]
So the output is correct however instead of specifying 2,1 I need that those values to be automatically placed there based on the shape of my matrix. How do I do that?
CodePudding user response:
In [163]: X = np.array([[1,2],[3,4]])
In [164]: np.inner(X,X)
Out[164]:
array([[ 5, 11],
[11, 25]])
In [165]: np.diag(np.inner(X,X))
Out[165]: array([ 5, 25])
reshape
with -1
gets around having to specify the 2
:
In [166]: np.diag(np.inner(X,X)).reshape(-1,1)
Out[166]:
array([[ 5],
[25]])
another way of adding dimension:
In [167]: np.diag(np.inner(X,X))[:,None]
Out[167]:
array([[ 5],
[25]])
You can get the "diagonal" directly with:
In [175]: np.einsum('ij,ij->i',X,X)
Out[175]: array([ 5, 25])
another
In [177]: (X[:,None,:]@X[:,:,None])[:,0,:]
Out[177]:
array([[ 5],
[25]])