I am trying to data augment my TensorFlow model's training data. My model runs without data augmentation. I want to augment training data to improve results. This is my attempt:
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
directory_testData,
#validation_split=0.2,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
directory_testData,
#validation_split=0.2,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model = create_functionalModel()
model.fit(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
I then ran it and am getting these errors:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-25-1c89b4a3fc84> in <module>()
30 epochs=50,
31 validation_data=validation_generator,
---> 32 validation_steps=800)
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
57 ctx.ensure_initialized()
58 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 59 inputs, attrs, num_outputs)
60 except core._NotOkStatusException as e:
61 if name is not None:
InvalidArgumentError: Input to reshape is a tensor with 663552 values, but the requested shape requires a multiple of 30976
[[node model_4/flatten_4/Reshape
(defined at /usr/local/lib/python3.7/dist-packages/keras/layers/core/flatten.py:96)
]] [Op:__inference_train_function_4555]
It seems that this issue is related to the input shapes required by my model. Can you please help me understand how to resolve this issue? Thank you.
CodePudding user response:
Your model requires an input of shape (180, 180) But you are resizing your images to (150, 150).
Changing:
target_size=(150, 150),
To:
target_size=(180, 180),
Should fix it.