I have a dataframe like this:
Folder1 Folder2
0 2021-11-22 12:00:00 2021-11-24 10:00:00
1 2021-11-23 10:30:00 2021-11-25 18:30:00
2 2021-11-12 10:30:00 2021-11-15 18:30:00
3 2021-11-23 10:00:00 NaN
Using this code:
def strfdelta(td: pd.Timestamp):
seconds = td.total_seconds()
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02}:{minutes:02}:{seconds:02}"
df["Folder1"] = pd.to_datetime(df["Folder1"])
df["Folder2"] = pd.to_datetime(df["Folder2"])
bm1 = df["Folder1"].notna() & df["Folder2"].notna()
bm2 = df["Folder1"].notna() & df["Folder2"].isna()
df["Time1"] = (df.loc[bm1, "Folder2"] - df.loc[bm1, "Folder1"]).apply(strfdelta)
df["Time2"] = (datetime.now() - df.loc[bm2, "Folder1"]).apply(strfdelta)
I have this df:
Folder1 Folder2 Time1 Time2
0 2021-11-22 12:00:00 2021-11-24 10:00:00 46:00:00 NaN
1 2021-11-23 10:30:00 2021-11-25 18:30:00 56:00:00 NaN
2 2021-11-12 10:30:00 2021-11-15 18:30:00 80:00:00 NaN
3 2021-11-23 10:00:00 NaN NaN 03:00:00
Basically, this is what i want, but, how can i exclude weekends hours when calculating the the difference between timestamps from Folder1 and Folder2? What should i change to have a df like this:
Folder1 Folder2 Time1 Time2
0 2021-11-22 12:00:00 2021-11-24 10:00:00 46:00:00 NaN
1 2021-11-23 10:30:00 2021-11-25 18:30:00 56:00:00 NaN
2 2021-11-12 10:30:00 2021-11-15 18:30:00 32:00:00 NaN
3 2021-11-23 10:00:00 NaN NaN 03:00:00
So, in row with index 2, 13.11 and 14.11 were weekends so, in Time 1 the difference should be 32 instead of 80
CodePudding user response:
I think you could leverage on pandas.date_range function combined with pandas.tseries.offsets.CustomBusinessHour like this:
# import pandas and numpy
import pandas as pd
import numpy as np
# construct dataframe
df = pd.DataFrame()
df["Folder1"] = pd.to_datetime(
pd.Series(
[
"2021-11-22 12:00:00",
"2021-11-23 10:30:00",
"2021-11-12 10:30:00",
"2021-11-23 10:00:00",
]
)
)
df["Folder2"] = pd.to_datetime(
pd.Series(
[
"2021-11-24 10:00:00",
"2021-11-25 18:30:00",
"2021-11-15 18:30:00",
np.NaN
]
)
)
# define custom business hours
cbh = pd.tseries.offsets.CustomBusinessHour(start="0:00", end="23:59")
# actual calculation
df["Time1"] = df[~(df["Folder1"].isnull() | df["Folder2"].isnull())].apply(
lambda row: len(
pd.date_range(
start=row["Folder1"],
end=row["Folder2"],
freq=cbh)),
axis=1,
)
df.head()
Which for me yields:
print(df.head())
Folder1 Folder2 Time1
0 2021-11-22 12:00:00 2021-11-24 10:00:00 46.0
1 2021-11-23 10:30:00 2021-11-25 18:30:00 56.0
2 2021-11-12 10:30:00 2021-11-15 18:30:00 32.0
3 2021-11-23 10:00:00 NaT NaN
As a bonus you can do your Time2 calculation more efficiently using it as well:
df["Time2"] = df[df["Folder2"].isnull()].apply(
lambda row: len(
pd.date_range(
start=row["Folder1"],
end=datetime.datetime.now(),
freq=cbh)),
axis=1,
)
Which for me yields (at 14:45 CET):
print(df.head())
Folder1 Folder2 Time1 Time2
0 2021-11-22 12:00:00 2021-11-24 10:00:00 46.0 NaN
1 2021-11-23 10:30:00 2021-11-25 18:30:00 56.0 NaN
2 2021-11-12 10:30:00 2021-11-15 18:30:00 32.0 NaN
3 2021-11-23 10:00:00 NaT NaN 5.0
CodePudding user response:
df['Folder1']=pd.to_datetime(df['Folder1'])
df['Folder2']=pd.to_datetime(df['Folder2']).fillna(df['Folder1'])
df['missing']=df.apply(lambda x: pd.date_range(start=x['Folder1'], end=x['Folder2'], freq='D'), axis=1)#Create column with missing date periods
df=(df.assign(time=np.where((df['missing'].apply(lambda x: x.strftime('%w'))).map(set).astype(str).str.contains('0|6'),#Where missing periods have a Saturday or Sunday
(df['Folder2']-df['Folder1']).astype('timedelta64[h]')-48,# When above condition is met, subtract two 48 hours from the two days columns difference
(df['Folder2']-df['Folder1']).astype('timedelta64[h]'))#When condition not met substract just the two date columns)
).drop(columns=['missing']) )
print(df)
Folder1 Folder2 time
0 2021-11-22 12:00:00 2021-11-24 10:00:00 46.0
1 2021-11-23 10:30:00 2021-11-25 18:30:00 56.0
2 2021-11-12 10:30:00 2021-11-15 18:30:00 32.0
3 2021-11-23 10:00:00 2021-11-23 10:00:00 0.0