I am using some of the standard CNN models shipped with Keras as base for my own models - let's say a VGG16. Until now I am used to call the respective preprocessing functions via the Keras image data generators, like so:
ImageDataGenerator(preprocessing_function=vgg16.preprocess_input) # or any other std. model
Now I want to use a TF Dataset
instead, so that I can use its from_tensor_slices()
method, which makes multi GPU training easier. I came up with the following custom preprocessing function for this new pipeline:
@tf.function
def load_images(image_path, label):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = vgg16.preprocess_input(image) # Is this call correct?
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
return (image, label)
But I am not sure whether this is the correct order of function calls, as well as the correct place of calling vgg16.preprocess_input(image)
within this order. Can I call this std. preprocessing function as this, or do I need to convert image
data before/after that?
CodePudding user response:
You could create a dataset from_tensor_slices()
with your paths and labels and then use map
to load and preprocess the images:
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy
from PIL import Image
# Create random images
for i in range(3):
imarray = numpy.random.rand(100,100,3) * 255
im = Image.fromarray(imarray.astype('uint8'))
im.save('result_image{}.jpeg'.format(i))
def load_images(image_path, label):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
#preprocess_input --> will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling
image = tf.keras.applications.vgg16.preprocess_input(image)
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
image /= 255.0
return image, label
IMG_SIZE = 64
paths = ['result_image0.jpeg', 'result_image1.jpeg', 'result_image2.jpeg']
labels = [0, 1, 1]
dataset = tf.data.Dataset.from_tensor_slices((paths, labels))
ds = dataset.map(load_images)
image, _ = next(iter(ds.take(1)))
plt.imshow(image)
Or you can use tf.keras.applications.vgg16.preprocess_input
as part of your model. For example:
preprocess = tf.keras.applications.vgg16.preprocess_input
some_input = tf.keras.layers.Input((256, 256, 3))
some_output = tf.keras.layers.Lambda(preprocess)(some_input)
model = tf.keras.Model(some_input, some_output)
model(tf.random.normal((2, 256, 256, 3)))