I'm trying to write a programm that solves system of equations Ax=B using Gauss-Jacobi iteration method.
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
int main(void) {
double **a, *b, *x, *f, eps = 1.e-2, c;
int n = 3, m = 3, i, j, bool = 1, d = 3;
/* printf("n=") ; scanf("%d", &n);
printf("m=") ; scanf("%d", &n) */
a =malloc(n * sizeof *a);
for (i = 0; i < n; i )
a[i] = (double*)malloc(m * sizeof(double));
b = malloc(m * sizeof *b);
x = malloc(m * sizeof *x) ;
f = malloc(m * sizeof *f) ;
for (i = 0; i < n; i ) {
for (j = 0; j < m; j ) {
printf("a[%d][%d]=", i, j);
scanf("%le", &a[i][j]);
if(fabs(a[i][i])<1.e-10) return 0 ;
}
printf("\n") ;
}
printf("\n") ;
for (i = 0; i < n; i ) {
for (j = 0; j < m; j ) {
printf("a[%d][%d]=%le ", i, j, a[i][j]);
}
printf("\n") ;
}
for (j = 0; j < m; j ) {
printf("x[%d]=", j);
scanf("%le", &x[j]);
} //intial guess
printf("\n") ;
for (j = 0; j < m; j ) {
printf("b[%d]=", j);
scanf("%le", &b[j]);
}
printf("\n") ;
while (1) {
bool = 0;
for (i = 0; i < n; i ) {
c = 0.0;
for (j = 0; j < m; j )
if (j != i)
c = a[i][j] * x[j];
f[i] = (b[i] - c) / a[i][i];
}
for (i = 0; i < m; i )
if (fabs(f[i] - x[i]) > eps)
bool = 1;
if (bool == 1)
for (i = 0; i < m; i )
x[i] = f[i];
else if (bool == 0)
break;
}
for (j = 0; j < m; j )
printf("%le\n", f[j]);
return 0;
}
The condition of stoping the loop is that previous approximation minus current approximation for all x is less than epsilon. It seems like i did everything according to algorithm,but the programm doesn't work. Where did i make a mistake?
CodePudding user response:
While not the most strict condition, the usual condition requiered to guarantee convergence in the Jacobi and Gauss-Seidel methods is diagonal dominance,
abs(a[i][i]) > sum( abs(a[i][j]), j=0...n-1, j!=i)
This test is also easy to implement as a check to run before the iteration.
The larger the relative gap in all these inequalities, the faster the convergence of the method.