I have a dataframe df
containing a struct-array column properties
(array column whose elements are struct fields having keys x
and y
) and I want to create a new array column by extracting the x
values from column properties
.
A sample input dataframe would be something like this
import pyspark.sql.functions as F
from pyspark.sql.types import *
data = [
(1, [{'x':11, 'y':'str1a'}, ]),
(2, [{'x':21, 'y':'str2a'}, {'x':22, 'y':0.22, 'z':'str2b'}, ]),
]
my_schema = StructType([
StructField('id', LongType()),
StructField('properties', ArrayType(
StructType([
StructField('x', LongType()),
StructField('y', StringType()),
])
)
),
])
df = spark.createDataFrame(data, schema=my_schema)
df.show()
# --- --------------------
# | id| properties|
# --- --------------------
# | 1| [[11, str1a]]|
# | 2|[[21, str2a], [22...|
# --- --------------------
df.printSchema()
# root
# |-- id: long (nullable = true)
# |-- properties: array (nullable = true)
# | |-- element: struct (containsNull = true)
# | | |-- x: long (nullable = true)
# | | |-- y: string (nullable = true)
On the other hand, the desired output df_new
should look like
df_new.show()
# --- -------------------- --------
# | id| properties|x_values|
# --- -------------------- --------
# | 1| [[11, str1a]]| [11]|
# | 2|[[21, str2a], [22...|[21, 22]|
# --- -------------------- --------
df_new.printSchema()
# root
# |-- id: long (nullable = true)
# |-- properties: array (nullable = true)
# | |-- element: struct (containsNull = true)
# | | |-- x: long (nullable = true)
# | | |-- y: string (nullable = true)
# |-- x_values: array (nullable = true)
# | |-- element: long (containsNull = true)
Does anybody know a solution for such task?
Ideally, I am looking for a solution which operates row-by-row without relying on F.explode
.
In fact in my actual database I have not identified an equivalent to id
column yet, and after calling F.explode
I would not be sure of how to coalesce back together the exploded values.
CodePudding user response:
Try using properties.x
then all values are extracted from the properties array.
Example:
df.withColumn("x_values",col("properties.x")).show(10,False)
#or by using higher order functions
df.withColumn("x_values",expr("transform(properties,p -> p.x)")).show(10,False)
# --- ------------------------- --------
#|id |properties |x_values|
# --- ------------------------- --------
#|1 |[[11, str1a]] |[11] |
#|2 |[[21, str2a], [22, 0.22]]|[21, 22]|
# --- ------------------------- --------