I am currently using Pyspark to do a moving average calculation for the last 12 months for different company group. The data looks like this:
| CALENDAR_DATE| COMPANY | VALUE
| 2021-11-01 | a | 31
| 2021-10-01 | a | 31
| 2021-09-01 | a | 33
| 2021-08-01 | a | 21
| 2021-07-01 | a | 25
| 2021-06-01 | a | 28
| 2021-05-01 | a | 31
| 2021-04-01 | a | 31
| 2021-03-01 | a | 33
| 2021-04-01 | a | 31
| 2021-03-01 | a | 33
| 2021-04-01 | a | 10
| 2021-03-01 | a | 25
| 2021-04-01 | a | 30
| 2021-03-01 | a | 27
| 2021-02-01 | a | 18
| 2021-01-01 | a | 15
| 2021-11-01 | b | 31
| 2021-10-01 | b | 30
| 2021-09-01 | b | 31
| 2021-08-01 | b | 32
and I would like to get an extra column called rolling_average for each company a and b. my code looks like this and it doesn't give me the right answer. I really don't know what is the problem.
from pyspark.sql.functions import *
from pyspark.sql.window import *
w = Window().partitionBy('COMPANY').orderBy('CALENDAR_DATE').rowsBetween(-11, 0)
df = df.withColumn('ROLLING_AVERAGE', round(avg('VALUE').over(w), 1))
CodePudding user response:
You need to use Window rangeBetween
instead of rowsBetween
. But before convert the CALENDAR_DATE
column into timestamp:
from pyspark.sql import Window
from pyspark.sql import functions as F
df = df.withColumn('calendar_timestamp', F.to_timestamp('CALENDAR_DATE').cast("long"))
# 2629800 is the number of seconds in one month
w = Window().partitionBy('COMPANY').orderBy('calendar_timestamp').rangeBetween(-11 * 2629800, 0)
df1 = df.withColumn(
'ROLLING_AVERAGE',
F.round(F.avg('VALUE').over(w), 1)
).drop('calendar_timestamp')
df1.show()
# ------------- ------- ----- ---------------
#|CALENDAR_DATE|COMPANY|VALUE|ROLLING_AVERAGE|
# ------------- ------- ----- ---------------
#| 2021-08-01| b| 32| 32.0|
#| 2021-09-01| b| 31| 31.5|
#| 2021-10-01| b| 30| 31.0|
#| 2021-11-01| b| 31| 31.0|
#| 2021-01-01| a| 15| 15.0|
#| 2021-02-01| a| 18| 16.5|
#| 2021-03-01| a| 33| 25.2|
#| 2021-03-01| a| 33| 25.2|
#| 2021-03-01| a| 25| 25.2|
#| 2021-03-01| a| 27| 25.2|
#| 2021-04-01| a| 31| 25.3|
#| 2021-04-01| a| 31| 25.3|
#| 2021-04-01| a| 10| 25.3|
#| 2021-04-01| a| 30| 25.3|
#| 2021-05-01| a| 31| 25.8|
#| 2021-06-01| a| 28| 26.0|
#| 2021-07-01| a| 25| 25.9|
#| 2021-08-01| a| 21| 25.6|
#| 2021-09-01| a| 33| 26.1|
#| 2021-10-01| a| 31| 26.4|
# ------------- ------- ----- ---------------