I would like to write custom data frame to eventhub.
val customDf = spark.read.json("path/to/json")
EventHub ConnectionString
val connectionString = new com.microsoft.azure.eventhubs.ConnectionStringBuilder("Endpoint=sb://test.servicebus.windows.net/;SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=xxxxxxxxxxxxxxxxxx=").setEventHubName("test")
val ehConf = EventHubsConf(connectionString.toString).setConsumerGroup("testing")
val eventhubSchema = spark.readStream.format("eventhubs").options(ehConf.toMap).option("eventhubs.partition.count", "4").load()
eventhubSchema.printSchema
will show the default schema of eventhub body
Now I want write the above customDf to eventhub
Method1:
ds = customDf \
.selectExpr("partitionKey", "body") \
.writeStream \
.format("eventhubs") \
.options(ehConf.toMap) \
.option("checkpointLocation", "///output.txt") \
.start()
Method2:
ds = customDf \
.writeStream \
.format("eventhubs") \
.options(ehConf.toMap) \
.option("checkpointLocation", "///output.txt") \
.start()
How do I write the customDf to eventhub. I even did select(get_json_object(cast to striong type) but I am getting as
org.apache.spark.sql.AnalysisException: cannot resolve 'body' given input columns
How to write the customDf to eventhub
CodePudding user response:
You need to transform data in your dataframe into a single column object - either binary or string - it's really depends on your consumers. The simplest way to do that is to pack all data as JSON, using the combination of to_json
struct
functions:
import pyspark.sql.functions as F
stream = customDf \
.select(F.to_json(F.struct("*")).alias("body")) \
.writeStream \
.format("eventhubs") \
.options(ehConf.toMap) \
.option("checkpointLocation", "...") \
.start()