This is the input I have:
val df = Seq(
("Adam","Angra", "Anastasia"),
("Boris","Borun", "Bisma"),
("Shawn","Samar", "Statham")
).toDF("fname", "mname", "lname")
df.createOrReplaceTempView("df")
I want Spark sql output to like below:
struct
{"data_description":"fname","data_details":"Adam"},{"data_description":"mname","data_details":"Angra"},{"data_description":"lname","data_details":"Anastasia"}
{"data_description":"fname","data_details":"Boris"},{"data_description":"mname","data_details":"Borun"},{"data_description":"lname","data_details":"Bisma"}
{"data_description":"fname","data_details":"Shawn"},{"data_description":"mname","data_details":"Samar"},{"data_description":"lname","data_details":"Statham"}
So far I tried below:
val df1 = spark.sql("""select concat(fname,':',mname,":",lname) as name from df""")
df1.createOrReplaceTempView("df1")
val df2 = spark.sql("""select named_struct('data_description','fname','data_details',split(name, ':')[0]) as struct1,named_struct('data_description','mname','data_details',split(name, ':')[1]) as struct2, named_struct('data_description','lname','data_details',split(name, ':')[2]) as struct3 from df1""")
df2.createOrReplaceTempView("df2")
The output from above:
struct1 struct2 struct3
{"data_description":"fname","data_details":"Adam"} {"data_description":"mname","data_details":"Angra"} {"data_description":"lname","data_details":"Anastasia"}
{"data_description":"fname","data_details":"Boris"} {"data_description":"mname","data_details":"Borun"} {"data_description":"lname","data_details":"Bisma"}
{"data_description":"fname","data_details":"Shawn"} {"data_description":"mname","data_details":"Samar"} {"data_description":"lname","data_details":"Statham"}
But I get 3 different structs. I need all in one single struct separated by commas
CodePudding user response:
The sql statement is as follows, others as you know.
val sql = """
select
concat_ws(
','
,concat('{"data_description":"fname","data_details":"',fname,'"}')
,concat('{"data_description":"mname","data_details":"',mname,'"}')
,concat('{"data_description":"lname","data_details":"',lname,'"}')
) as struct
from df
"""
CodePudding user response:
You can create array of structs, then use to_json
if you want output as string:
spark.sql("""
select to_json(array(
named_struct('data_description','fname','data_details', fname),
named_struct('data_description','mname','data_details', mname),
named_struct('data_description','lname','data_details', lname)
)) as struct
from df
""").show()
// ----------------------------------------------------------------------------------------------------------------------------------------------------------------
//|struct |
// ----------------------------------------------------------------------------------------------------------------------------------------------------------------
//|[{"data_description":"fname","data_details":"Adam"},{"data_description":"mname","data_details":"Angra"},{"data_description":"lname","data_details":"Anastasia"}]|
//|[{"data_description":"fname","data_details":"Boris"},{"data_description":"mname","data_details":"Borun"},{"data_description":"lname","data_details":"Bisma"}] |
//|[{"data_description":"fname","data_details":"Shawn"},{"data_description":"mname","data_details":"Samar"},{"data_description":"lname","data_details":"Statham"}] |
// ----------------------------------------------------------------------------------------------------------------------------------------------------------------
If you have many columns, you can dynamically generate the struct sql expressions like this:
val structs = df.columns.map(c => s"named_struct('data_description','$c','data_details', $c)").mkString(",")
val df2 = spark.sql(s"""
select to_json(array($structs)) as struct
from df
""")
If you don't want to use array, you can simply concatenate the result of to_json
on the 3 structs:
val structs = df.columns.map(c => s"to_json(named_struct('data_description','$c','data_details', $c))").mkString(",")
val df2 = spark.sql(s"""
select concat_ws(',', $structs) as struct
from df
""")