I have the following simplified code:
class States:
def __init__(self):
pass
def state1(self):
a = 2*10
return a
def state2(self):
a = 50/10
return a
class Results:
def __init__(self):
pass
def result(self):
states = States()
x = []
for i in [state1,state2]:
state_result = states.i()
x.append(state_result)
return x
I want to loop through every function in the class "States". Of course
for i in [state1,state2]
will return "name 'state1' is not defined", but I hope it gives an idea what I try to achieve.
CodePudding user response:
You can use dir()
to get the name of the functions of a class. You can then use getattr()
to call the function.
class States:
def __init__(self):
pass
def state1(self):
a = 2*10
return a
def state2(self):
a = 50/10
return a
state = States()
for func in dir(States):
if func.startswith('__'):
continue
print(func)
print(getattr(state, func)())
Will output
state1
20
state2
5.0
CodePudding user response:
You can do this tho:
def result(self):
states = States()
x = []
for i in [states.state1,states.state2]: # changed state1 to states.state1 and so on
state_result = i()
x.append(state_result)
return x
CodePudding user response:
I think you can use lambda. Here, i made a simple example for you.
def foo(text):
print(text)
a = [lambda: foo("hey"), lambda: foo("boo")]
for i in a:
i()
Result:
hey
boo
In your case, you should come over with this:
for i in [lambda: state1(), lambda:state2()]:
state_result = i()
x.append(state_result)
But if you ask my opinion, it's important to inform you that calling functions through a list is not a healthy way. A software languge usually has a solution for many cases; but in this case, i think your point of view is wrong. Doing work by messing with built-in techniques and trying to find some secret tricks is is not a suggested thing.
CodePudding user response:
You can get the members of class States via the class' dict as:
States.__dict__
Which'll give you all the attributes and function of your class as:
{'__module__': '__main__', '__init__': <function States.__init__ at 0x00000183066F0A60>, 'state1': <function States.state1 at 0x00000183066F0AF0>, 'state2': <function States.state2 at 0x000001830 ...
You can filter this into a list comprehension dict to not include dunders as:
[funcname for funcname in States.__dict__ if not (str.startswith('__') and str.endswith('__'))]
This will return you a list of member functions as:
['state1', 'state2']
Then create an object of States as:
states = States()
get the whole calculation done as:
for funcname in [funcname for funcname in States.__dict__ if not (funcname.startswith('__') and funcname.endswith('__'))]:
x.append(States.__dict__[funcname](states))
Better yet, make it a comprehension as:
[States.__dict__[funcname](states) for funcname in States.__dict__ if not (funcname.startswith('__') and funcname.endswith('__'))]
Your answer after applying this approach is: [20, 5.0]
CodePudding user response:
The clean way to do this is to "register" your state methods. SOmething like this:
class States():
states = []
def register_state(cache):
def inner(fn):
cache.append(fn)
return inner
@register_state(states)
def state1(self):
a = 2*10
return a
@register_state(states)
def state2(self):
a = 50/10
return a
Then your Results class can do
class Results:
def __init__(self):
pass
def result(self):
states = States()
x = []
for i in states.states:
state_result = i(states)
x.append(state_result)
return x