Given this dataset that contains the datetime for an event and the datetime of ticket scan
event_name | event_datetime | scan_datetime |
---|---|---|
Game 1 | 2018-10-17 19:30:00 | 2018-10-17 20:01:20 2018-10-17 19:20:10 2018-10-17 21:44:43 2018-10-17 20:30:46 2018-10-17 19:51:56 |
... | ... | ... |
Game 2 | 2019-04-10 19:30:00 | 2019-04-10 19:39:35 2019-04-10 30:30:49 2019-04-10 20:41:10 2019-04-10 19:46:20 2019-04-10 22:24:19 |
And the desired output should be a column with every 15 minute time intervals before and after event_datetime with values of scan_datetime
Time_intervals | 90-75 | 75-60 | 60-45 | 45-30 | 30-15 | 15-0 | 0-15 | 15-30 | 30-45 | 45-60 |
---|---|---|---|---|---|---|---|---|---|---|
count | 2 | 1 | 5 | 6 | 4 | 3 | 25 | 7 | 4 | 1 |
CodePudding user response:
First, you need to extract datetime from scan_datetime
column then explode it.
Next, compute the time delta between event_datetime
and scan_datetime
columns. Finally, bin values and count number of occurrences.
DT = r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}'
df['scan_datetime'] = df['scan_datetime'].str.findall(DT)
df = df.explode('scan_datetime').astype({'event_datetime': 'datetime64',
'scan_datetime': 'datetime64'})
df['diff'] = df['event_datetime'].sub(df['scan_datetime']).dt.total_seconds().div(60)
bins = np.arange(24*-15, 24*15 1, 15)
labels = [f'{abs(i)}-{abs(j)}' for i, j in zip(bins, bins[1:])]
out = pd.cut(df['diff'], bins=bins, labels=labels) \
.value_counts(sort=False).to_frame('count').T
Output:
>>> out
180-165 165-150 150-135 135-120 120-105 105-90 90-75 75-60 60-45 45-30 ... 30-45 45-60 60-75 75-90 90-105 105-120 120-135 135-150 150-165 165-180
count 1 0 0 1 0 0 0 3 0 1 ... 0 0 0 0 0 0 0 0 0 0
[1 rows x 24 columns]
CodePudding user response:
First you explode the list in scan_datetime.
df = df.explode("scan_datetime").reset_index(drop=True)
This will make each scan a separate row. I am assuming the values in the list are strings, so we convert them to datetime:
df["scan_datetime"] = pd.to_datetime(df["scan_datetime"])
Than you calculate the difference:
df["diff"] = df["event_datetime"] - df["scan_datetime"]
df["diff"] = (df["diff"].dt.total_seconds()/60).astype(int)
Now you differences in minutes(signed integers). Than you run value counts with the specified intervals.
df["diff"].value_counts(bins=[-90,-75,-60, -45, -30, -15, 0, 15, 30, 45, 60])