How to select columns from MultiIndex pandas table in a custom order? In this case, how can I have Quantity to come before Price (without the use of ascending = false) as well as the size to be in the order: medium, large, small.
Desired output:
Quantity Price
Size medium large small medium large small
0 3 4 3 6 6 5
1 6 7 5 9 9 8
2 2 2 1 4 5 2
Creation of Dataframe:
df = pd.DataFrame({"Item": ["foo", "foo", "foo", "bar", "bar",
"bar", "baz", "baz", "baz"],
"Size": ["small", "medium", "large", "small",
"medium", "large", "small", "medium",
"large"],
"Price": [1, 2, 2, 3, 3, 4, 5, 6, 7],
"Quantity": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
df = pd.pivot_table(df,index=["Item"],columns=["Size"],values=["Price","Quantity"],aggfunc=np.sum)
df.reset_index(drop=True, inplace=True)
#Dataframe:
Price Quantity
Size large medium small large medium small
0 4 3 3 6 6 5
1 7 6 5 9 9 8
2 2 2 1 5 4 2
I have tried to use dataframe.loc[], however, I have realized .loc[] does not maintain the specific order.
df.loc[:, (['Quantity', 'Price'], ['medium', 'large', 'small'])]
CodePudding user response:
You can use pd.MultiIndex.from_product
to generate the indices:
idx = pd.MultiIndex.from_product([['Quantity', 'Price'], ['medium', 'large', 'small']])
idx
MultiIndex([('Quantity', 'medium'),
('Quantity', 'large'),
('Quantity', 'small'),
( 'Price', 'medium'),
( 'Price', 'large'),
( 'Price', 'small')],
)
df[idx]
Quantity Price
Size medium large small medium large small
0 6 6 5 3 4 3
1 9 9 8 6 7 5
2 4 5 2 2 2 1
CodePudding user response:
Passing a list of lists works:
df.loc(axis=1)[['Quantity', 'Price'], ['medium', 'large', 'small']]
Quantity Price
Size medium large small medium large small
0 6 6 5 3 4 3
1 9 9 8 6 7 5
2 4 5 2 2 2 1
pandas version 1.2