I have the following data frame, that shows which cases are interconnected:
DebtorId DupDebtorId
1: 1 2
2: 1 3
3: 1 4
4: 5 1
5: 5 2
6: 5 3
7: 6 7
8: 7 6
My goal is to assign a unique group ID to each group of cases. The desired output is:
DebtorId group
1: 1 1
2: 2 1
3: 3 1
4: 4 1
5: 5 1
6: 6 2
7: 7 2
My train of thought:
library(data.table)
example <- data.table(
DebtorId = c(1,1,1,5,5,5,6,7),
DupDebtorId = c(2,3,4,1,2,3,7,6)
)
unique_pairs <- example[!duplicated(t(apply(example, 1, sort))),] #get unique pairs of DebtorID and DupDebtorID
unique_pairs[, group := .GRP, by=.(DebtorId)] #assign a group ID for each DebtorId
unique_pairs[, num := rowid(group)]
groups <- dcast(unique_pairs, group DebtorId ~ num, value.var = 'DupDebtorId') #format data to wide for each group ID
#create new data table with unique cases to assign group ID
newdt <- data.table(DebtorId = sort(unique(c(example$DebtorId, example$DupDebtorId))), group = NA)
newdt$group <- as.numeric(newdt$group)
#loop through the mapped groups, selecting the first instance of group ID for the case
for (i in 1:nrow(newdt)) {
a <- newdt[i]$DebtorId
b <- min(which(groups[,-1] == a, arr.ind=TRUE)[,1])
newdt[i]$group <- b
}
Output:
DebtorId group
1: 1 1
2: 2 1
3: 3 1
4: 4 1
5: 5 2
6: 6 3
7: 7 3
There are 2 problems in my approach:
- From the output, you can see that it fails to recognize that case 5 belongs to group 1;
- The final loop is agonizingly slow, which would
render it useless for my use case of 1M rows in my original data, and going the traditional
:=
way does not work withwhich()
I'm not sure whether my approach could be optimized, or there is a better way of doing this altogether.
CodePudding user response:
This functionality already exists in igraph
, so if you don't need to do it yourself, we can build a graph from your data frame and then extract cluster membership. stack()
is just an easy way to convert a named vector to data frame.
library(igraph)
g <- graph.data.frame(df)
df_membership <- clusters(g)$membership
stack(df_membership)
#> values ind
#> 1 1 1
#> 2 1 5
#> 3 2 6
#> 4 2 7
#> 5 1 2
#> 6 1 3
#> 7 1 4
Above, values
corresponds to group
and ind
to DebtorId
.