There is a table in a CSV
file format:
A | B |
---|---|
35480007 | 0695388 |
35480007 | 0695388 |
35407109 | 3324741 |
35407109 | 3324741 |
35250208 | 0695388 |
35250208 | 6104556 |
86730903 | 3360935 |
86730903 | 3360935 |
Could you please tell me how can data aggregation be done using the pandas
library to display information about which values from column B
intersect with column A
?
As a result, I need to display the following information:
The value 0695388
from column B
corresponds to the values from column A
: 35480007
, 35250208
, etc. duplicates from column A
are not taken into account.
CodePudding user response:
Try with groupby
:
>>> df.groupby("B")["A"].unique()
B
695388 [35480007, 35250208]
3324741 [35407109]
3360935 [86730903]
6104556 [35250208]
Name: A, dtype: object