How can I modify the below dictionary comprehension to take into account that column s
should also be a matching criteria?
import pandas as pd
dct = {'NNI' : pd.DataFrame({'s': [-1, -1, -1, 1, 1],
'count': [13, 11, 10,12, 16]},
index =['2007-07-13', '2019-09-18', '2016-08-01', '2021-04-05','2017-01-04' ]),
'NVEC' : pd.DataFrame({'s': [-1, -1, -1, 1, 1],
'count': [12, 10, 9,14,5]},
index =['2012-10-09', '2018-10-01', '2022-02-01', '2020-03-20','2016-04-06'])
}
df = pd.DataFrame({'Date': ['2022-02-14', '2022-02-14', '2022-02-14', '2022-02-14', '2022-02-14'],
's': [-1,-1,-1,1,1],
'count': [10, 10, 10, 9, 9]},
index = ['NNI', 'NVEC', 'IPA', 'LYTS', 'MYN'])
df
:
Date s count
NNI 2022-02-14 -1 10
NVEC 2022-02-14 -1 10
IPA 2022-02-14 -1 10
LYTS 2022-02-14 1 9
MYN 2022-02-14 1 9
dct
:
{'NNI': s count
2007-07-13 -1 13
2019-09-18 -1 11
2016-08-01 -1 10
2021-04-05 1 12
2017-01-04 1 16,
'NVEC': s count
2012-10-09 -1 12
2018-10-01 -1 10
2022-02-01 -1 9
2020-03-20 1 14
2016-04-06 1 5}
This is what I have so far:
df = df.assign(ratio=pd.Series({k: v['count'].gt(df.loc[k, 'count']).sum() /
v['count'].ge(df.loc[k, 'count']).sum() for k,v in dct.items()})).fillna(0)
df
Date s count ratio
NNI 2022-02-14 -1 10 0.800000
NVEC 2022-02-14 -1 10 0.666667
IPA 2022-02-14 -1 10 0.000000
LYTS 2022-02-14 1 9 0.000000
MYN 2022-02-14 1 9 0.000000
Desired result is:
df
Date s count ratio
NNI 2022-02-14 -1 10 0.666667
NVEC 2022-02-14 -1 10 0.500000
IPA 2022-02-14 -1 10 0.000000
LYTS 2022-02-14 1 9 0.000000
MYN 2022-02-14 1 9 0.000000
CodePudding user response:
You can add it as boolean mask like:
v.loc[v['s'] == df.loc[k, 's'], 'count']
So the code becomes:
df = df.assign(ratio=pd.Series({k: v.loc[v['s'] == df.loc[k, 's'], 'count'].gt(df.loc[k, 'count']).sum() /
v.loc[v['s'] == df.loc[k, 's'], 'count'].ge(df.loc[k, 'count']).sum()
for k,v in dct.items()})).fillna(0)
Output:
Date s count ratio
NNI 2022-02-14 -1 10 0.666667
NVEC 2022-02-14 -1 10 0.500000
IPA 2022-02-14 -1 10 0.000000
LYTS 2022-02-14 1 9 0.000000
MYN 2022-02-14 1 9 0.000000
Just a suggestion but it might be helpful to use a helper function here because the division is kind of unreadable there especially after adding the indexing. You could use:
def get_ratio(df_row, v):
msk = v['s'] == df_row['s']
numerator = v.loc[msk, 'count'].gt(df_row['count']).sum()
denominator = v.loc[msk, 'count'].ge(df_row['count']).sum()
return numerator / denominator
df = df.assign(ratio = pd.Series({k: get_ratio(df.loc[k], v) for k,v in dct.items()})).fillna(0)