What is the simplest way to implement fuzzy relational composition of two matrices in R? I coded a version of it but it's supposedly very slow, so I wonder if there's vectorized operations that can make it faster
circ_prod <- function(R,S) {
if(ncol(R) != nrow(S)) errorCondition("dimensions don't match")
R_circ_S <- matrix(0, nrow(R), ncol(S))
for (i in 1:nrow(R)) {
for (k in 1:ncol(S))
R_circ_S[i,k] <- max(pmin(R[i,],S[,k]))
}
R_circ_S
}
There is a link that explains why doing so is important what is fuzzy relational composition and some small examples.
CodePudding user response:
Here are some more options. maxmin1
and maxmin2
implement the max-min composition. maxprod1
and maxprod2
implement the max-product composition.
maxmin1
and maxprod1
are going to perform similarly to (if not worse than) a nested for
loop, since apply
has a loop in its body.
maxmin2
and maxprod2
are optimized versions that rely solely on vectorized functions. When ncol(R)
exceeds 2, they use colMaxs
from package matrixStats
to find columnwise maxima efficiently.
Implementing these functions in C would allow you optimize further.
maxmin1 <- function(R, S) {
t(apply(R, 1L, function(x) apply(pmin(S, x), 2L, max)))
}
maxmin2 <- function(R, S) {
m <- (d <- dim(R))[1L]
p <- d[2L]
n <- dim(S)[2L]
if (p == 1L) {
return(matrix(pmin(rep(R, each = n), S), m, n, byrow = TRUE))
}
r <- sequence.default(nvec = rep.int(p, m * n), from = rep(seq_len(m), each = n), by = m)
x <- pmin(S, R[r])
if (p == 2L) {
y <- x[seq.int(1L, length(x), 2L) (x[c(TRUE, FALSE)] < x[c(FALSE, TRUE)])]
} else {
y <- matrixStats::colMaxs(matrix(x, 2L))
}
matrix(y, m, byrow = TRUE)
}
maxprod1 <- function(R, S) {
t(apply(R, 1L, function(x) apply(S * x, 2L, max)))
}
maxprod2 <- function(R, S) {
m <- (d <- dim(R))[1L]
p <- d[2L]
n <- dim(S)[2L]
if (p == 1L) {
return(matrix(rep(R, each = n) * S, m, n, byrow = TRUE))
}
r <- sequence.default(nvec = rep.int(p, m * n), from = rep(seq_len(m), each = n), by = m)
x <- as.double(S) * R[r]
if (p == 2L) {
y <- x[seq.int(1L, length(x), 2L) (x[c(TRUE, FALSE)] < x[c(FALSE, TRUE)])]
} else {
y <- matrixStats::colMaxs(matrix(x, 2L))
}
matrix(y, m, byrow = TRUE)
}
R <- matrix(c(0.7, 0.8, 0.6, 0.3), 2L, 2L)
R
## [,1] [,2]
## [1,] 0.7 0.6
## [2,] 0.8 0.3
S <- matrix(c(0.8, 0.1, 0.5, 0.6, 0.4, 0.7), 2L, 3L)
## [,1] [,2] [,3]
## [1,] 0.8 0.5 0.4
## [2,] 0.1 0.6 0.7
maxmin1(R, S)
## [,1] [,2] [,3]
## [1,] 0.7 0.6 0.6
## [2,] 0.8 0.5 0.4
maxmin2(R, S)
## [,1] [,2] [,3]
## [1,] 0.7 0.6 0.6
## [2,] 0.8 0.5 0.4
microbenchmark::microbenchmark(maxmin1(R, S), maxmin2(R, S), times = 1000L)
## Unit: microseconds
## expr min lq mean median uq max neval
## maxmin1(R, S) 35.342 38.9090 50.00364 43.9725 54.694 1861.769 1000
## maxmin2(R, S) 7.052 8.1385 10.22175 9.7990 11.521 78.064 1000
maxprod1(R, S)
## [,1] [,2] [,3]
## [1,] 0.56 0.36 0.42
## [2,] 0.64 0.40 0.32
maxprod2(R, S)
## [,1] [,2] [,3]
## [1,] 0.56 0.36 0.42
## [2,] 0.64 0.40 0.32
microbenchmark::microbenchmark(maxprod1(R, S), maxprod2(R, S), times = 1000L)
## Unit: microseconds
## expr min lq mean median uq max neval
## maxprod1(R, S) 26.937 28.454 33.684411 30.832 32.677 1664.805 1000
## maxprod2(R, S) 3.075 3.526 3.935959 3.772 4.100 54.079 1000