My data frame looks like this one
library(tidyverse)
df1 <- tibble(col1= c("apple","apple","banana","banana"),
col2 = c("appl","aple","banan","bananb"),
count_col1=c(1,1,4,4), count_col2=c(3,4,1,1))
df1
#> # A tibble: 4 × 4
#> col1 col2 count_col1 count_col2
#> <chr> <chr> <dbl> <dbl>
#> 1 apple appl 1 3
#> 2 apple aple 1 4
#> 3 banana banan 4 1
#> 4 banana bananb 4 1
Created on 2022-02-17 by the reprex package (v2.0.1)
I want to select after grouping_by col1 the row that has the maximum value based on count_col1 and count_col2.
I want my data to look like this
col1 col2 count_col1 count_col2
apple aple 1 4
banana banan 4 1
banana bananb 4 1
for one column you can write something
df1 %>%
slice(which.max(count_col1))
but not for two
CodePudding user response:
We may get rowwise max of the 'count' columns with pmax
, grouped by 'col1', filter
the rows where the max
value of 'Max' column is.
library(dplyr)
df1 %>%
mutate(Max = pmax(count_col1, count_col2) ) %>%
group_by(col1) %>%
filter(Max == max(Max)) %>%
ungroup %>%
select(-Max)
-output
# A tibble: 3 × 4
col1 col2 count_col1 count_col2
<chr> <chr> <dbl> <dbl>
1 apple aple 1 4
2 banana banan 4 1
3 banana bananb 4 1
We may also use slice_max
library(purrr)
df1 %>%
group_by(col1) %>%
slice_max(invoke(pmax, across(starts_with("count")))) %>%
ungroup
# A tibble: 3 × 4
col1 col2 count_col1 count_col2
<chr> <chr> <dbl> <dbl>
1 apple aple 1 4
2 banana banan 4 1
3 banana bananb 4 1