I am trying to pull out an element from this JSON data and format it into another column in my pandas DataFrame.
Here is the code I have so far:
#Import libraries
import json
import requests
from IPython.display import JSON
import pandas as pd
#Load data
astronaut_db_url = 'https://supercluster-iadb.s3.us-east-2.amazonaws.com/adb.json'
astronauts_db = requests.get(astronaut_db_url).json()
#Format data
df = pd.json_normalize(astronauts_db['astronauts'])
df_astro = df[['_id','astroNumber','awards','name','gender','inSpace','overallNumber','spacewalkCount','species','speciesGroup',
'totalMinutesInSpace','totalSecondsSpacewalking','lastLaunchDate.utc']]
#Get row per award
df_awards = df_astro.explode(['awards']).reset_index(drop=True)
df_awards.head()
df_awards['awards'][0]['title']
I want to grab the title of the award for each astronaut in my DataFrame and create a new column with the list of awards in one cell that looks like the following:
Astronaut_ID Awards
dh3405kdmnd [First Person In Space, First Person to Cross Karman Line]
ert549fkfl3 [Crossed Karman Line, First Person on Moon]
My idea for tackling this problem was to:
- Get a row for each award for every astronaut
- Strip the JSON cells down to just the title
- Recombine in one cell per astronaut
I am not sure how to complete step 2 of this process. Can someone help point me in the right direction?
CodePudding user response:
I'd go for using awards
as a list of dictionaries and apply the function to every element of it.
import json
import requests
from IPython.display import JSON
import pandas as pd
#Load data
astronaut_db_url = 'https://supercluster-iadb.s3.us-east-2.amazonaws.com/adb.json'
astronauts_db = requests.get(astronaut_db_url).json()
#Format data
df = pd.json_normalize(astronauts_db['astronauts'])
df_astro = df[['_id','astroNumber','awards','name','gender','inSpace','overallNumber','spacewalkCount','species','speciesGroup',
'totalMinutesInSpace','totalSecondsSpacewalking','lastLaunchDate.utc']]
#Get row per award
df_awards = df_astro[['_id', 'awards']].copy()
df_awards['awards'] = df_awards['awards'].apply(lambda awards: [award['title'] for award in awards])
df_awards.columns = ['Astronaut_ID', 'Awards']
print(df_awards.head())
CodePudding user response:
Instead of doing steps 1-2, you can pass in record_path
and meta
directly into json_normalize
. Then step 3 can be done using groupby
agg(list)
:
df_awards = pd.json_normalize(astronauts_db['astronauts'], 'awards', '_id').groupby('_id', as_index=False)['title'].agg(list)
print(df_awards.head(5))
Output:
_id title
0 0554c903-e8a6-43c5-8da8-76fb3495e93f [First Steppe Tortoise (Agrionemys horsfieldii)]
1 0729eec8-ae2f-44a5-900f-08b2f491c8fe [Crossed Kármán Line, ISS Visitor]
2 0ff02f81-a865-465d-97b8-cd6be84c56aa [Crossed Kármán Line, ISS Visitor, Space Resid...
3 157edd2d-58a0-4f47-b85d-4c6ade14a973 [Crossed Kármán Line]
4 15c82ce2-10d5-45e7-848e-6df388307e1f [Crossed Kármán Line]