I have a dataframe with 198 rows and 60 columns. I need to delete about 20 of these rows, is there any way to do this quickly?
df.drop would not allow me to
CodePudding user response:
You can try this:
data = np.random.randint(100, size=(10,10))
df = pd.DataFrame(data)
print(df)
Before using df.drop():
0 1 2 3 4 5 6 7 8 9
0 87 36 28 25 10 28 99 54 45 36
1 96 25 64 30 47 60 65 69 78 40
2 64 29 65 49 50 99 11 89 52 33
3 96 68 98 41 37 94 21 90 74 68
4 87 23 67 50 76 85 63 37 91 71
5 50 4 60 62 72 76 61 11 93 30
6 21 18 62 34 15 72 85 31 62 66
7 57 18 40 25 10 30 35 62 73 43
8 1 89 75 25 84 11 82 36 98 58
9 78 49 46 52 8 84 2 29 57 87
print()
After using df.drop():
print(df.drop([0,1,5,9]))
0 1 2 3 4 5 6 7 8 9
2 64 29 65 49 50 99 11 89 52 33
3 96 68 98 41 37 94 21 90 74 68
4 87 23 67 50 76 85 63 37 91 71
5 50 4 60 62 72 76 61 11 93 30
6 21 18 62 34 15 72 85 31 62 66
7 57 18 40 25 10 30 35 62 73 43
8 1 89 75 25 84 11 82 36 98 58
9 78 49 46 52 8 84 2 29 57 87
CodePudding user response:
Deleting rows or columns? What do you mean it would allow you to delete?
# Delete Rows by Index Range
df1=df.drop(df.index[2:])
Are you looking for a filter condition among the data? Like using window partition function here