I have the following DataFrame that I get "as-is" from an API:
df = pd.DataFrame({'keys': {0: "[{'contract': 'G'}, {'contract_type': 'C'}, {'strike': '560'}, {'strip': '10/1/2022'}]",
1: "[{'contract': 'G'}, {'contract_type': 'P'}, {'strike': '585'}, {'strip': '10/1/2022'}]",
2: "[{'contract': 'G'}, {'contract_type': 'C'}, {'strike': '580'}, {'strip': '10/1/2022'}]",
3: "[{'contract': 'G'}, {'contract_type': 'C'}, {'strike': '545'}, {'strip': '10/1/2022'}]",
4: "[{'contract': 'G'}, {'contract_type': 'P'}, {'strike': '555'}, {'strip': '10/1/2022'}]"},
'value': {0: 353.3, 1: 25.8, 2: 336.65, 3: 366.05, 4: 20.8}})
Each row of the "keys" column is a string (not JSON, as the values are enclosed in single quotes instead of double quotes). For example:
>>> df.at[0, keys]
"[{'contract': 'G'}, {'contract_type': 'C'}, {'strike': '560'}, {'strip': '10/1/2022'}]"
I would like to convert the keys
column to a DataFrame and append it to df
as new columns.
I am currently—
- Replacing single quotes with double quotes and passing to
json.loads
to read into a list of dictionaries with the below structure:
[{'contract': 'G'}, {'contract_type': 'C'}, {'strike': '560'}, {'strip': '10/1/2022'}]
- Combining the dictionaries into a single dictionary with dictionary comprehension:
{'contract': 'G', 'contract_type': 'C', 'strike': '560', 'strip': '10/1/2022'}
apply
-ing this to every row and calling thepd.DataFrame
constructor on the result.join
back to originaldf
In a single line, my code is:
>>> df.drop("keys", axis=1).join(pd.DataFrame(df["keys"].apply(lambda x: {k: v for d in json.loads(x.replace("'","\"")) for k, v in d.items()}).tolist()))
value contract contract_type strike strip
0 353.30 G C 560 10/1/2022
1 25.80 G P 585 10/1/2022
2 336.65 G C 580 10/1/2022
3 366.05 G C 545 10/1/2022
4 20.80 G P 555 10/1/2022
I was wondering if there is a better way to do this.
CodePudding user response:
You can use eval
and ChainMap
collection to merge a list of dictionaries into a single dict.
from collections import ChainMap
df['keys'] = df['keys'].apply(eval).apply(lambda x: dict(ChainMap(*x)))
print(df)
keys value
0 {'strip': '10/1/2022', 'strike': '560', 'contr... 353.30
1 {'strip': '10/1/2022', 'strike': '585', 'contr... 25.80
2 {'strip': '10/1/2022', 'strike': '580', 'contr... 336.65
3 {'strip': '10/1/2022', 'strike': '545', 'contr... 366.05
4 {'strip': '10/1/2022', 'strike': '555', 'contr... 20.80
Then use .apply(pd.Series)
to explode a column of dictionaries into separate columns and use concat
to combine it with the rest of the dataframe
df_ = pd.concat([df['keys'].apply(pd.Series), df['value']], axis=1)
print(df_)
strip strike contract_type contract value
0 10/1/2022 560 C G 353.30
1 10/1/2022 585 P G 25.80
2 10/1/2022 580 C G 336.65
3 10/1/2022 545 C G 366.05
4 10/1/2022 555 P G 20.80
CodePudding user response:
You could use ast.literal_eval
(built-in) to convert the dict strings to actual dicts, and then use pd.json_normalize
with record_path=[[]]
to get the objects into a table format:
import ast
new_df = pd.json_normalize(df['keys'].apply(ast.literal_eval), record_path=[[]]).apply(lambda col: col.dropna().tolist())
Output:
>>> new_df
contract contract_type strike strip
0 G C 560 10/1/2022
1 G P 585 10/1/2022
2 G C 580 10/1/2022
3 G C 545 10/1/2022
4 G P 555 10/1/2022
An alternate solution would be to use string replacement to merge the separate dicts into one:
import ast
new_df = pd.DataFrame(df['keys'].str.replace("'}, {'", "', '", regex=True).apply(ast.literal_eval).str[0].tolist())
Output:
Yet another option, this one using functools.reduce
(built in):
import ast
new_df = pd.DataFrame(df['keys'].apply(ast.literal_eval).apply(lambda row: functools.reduce(lambda x, y: x | y, row)).tolist())