I have a problem where I need to group the data by two groups, and attach a column that sort of counts the subgroup.
Example dataframe looks like this:
colA colB
1 a
1 a
1 c
1 c
1 f
1 z
1 z
1 z
2 a
2 b
2 b
2 b
3 c
3 d
3 k
3 k
3 m
3 m
3 m
Expected output after attaching the new column is as follows:
colA colB colC
1 a 1
1 a 1
1 c 2
1 c 2
1 f 3
1 z 4
1 z 4
1 z 4
2 a 1
2 b 2
2 b 2
2 b 2
3 c 1
3 d 2
3 k 3
3 k 3
3 m 4
3 m 4
3 m 4
I tried the following but I cannot get this trivial looking problem solved:
Solution 1 I tried that does not give what I am looking for:
df['ONES']=1
df['colC']=df.groupby(['colA','colB'])['ONES'].cumcount() 1
df.drop(columns='ONES', inplace=True)
I also played with transform, and cumsum functions, and apply, but I cannot seem to solve this. Any help is appreciated.
Edit: minor error on dataframes.
Edit 2: For simplicity purposes, I showed similar values for column B, but the problem is within a larger group (indicated by colA), colB may be different and therefore, it needs to be grouped by both at the same time.
Edit 3: Updated dataframes to emphasize what I meant by my second edit. Hope this makes it more clear and reproduceable.
CodePudding user response:
You could use groupby
ngroup
:
df['colC'] = df.groupby('colA').apply(lambda x: x.groupby('colB').ngroup() 1).droplevel(0)
Output:
colA colB colC
0 1 a 1
1 1 a 1
2 1 c 2
3 1 c 2
4 1 f 3
5 1 z 4
6 1 z 4
7 1 z 4
8 2 a 1
9 2 b 2
10 2 b 2
11 2 b 2
12 3 c 1
13 3 d 2
14 3 k 3
15 3 k 3
16 3 m 4
17 3 m 4
18 3 m 4
CodePudding user response:
Categorically, factorize
df['colC'] =df['colB'].astype('category').cat.codes 1
colA colB colC
0 1 a 1
1 1 a 1
2 1 b 2
3 1 b 2
4 1 c 3
5 1 d 4
6 1 d 4
7 1 d 4
8 2 a 1
9 2 b 2
10 2 b 2
11 2 b 2
12 3 a 1
13 3 b 2
14 3 c 3
15 3 c 3
16 3 d 4
17 3 d 4
18 3 d 4