Im trying to subtract selected columns from one certain column, but its giving me an error "ValueError: Expected a 1D array, got an array with shape (3, 4)". My csv file looks like this:
Number Nimi Summa Kino
0 1 Jan 30.5 12.5
1 2 Pets 30.5 12.5
2 3 Anni 30.5 12.5
Because there can be unlimited amount of columns created by the user I need to select every column except "Number, Nimi and Summa". Outcome should be every column that comes after "Summa" needs to be subtracted from "Summa". I hope this makes sense.
df = pd.read_csv ('eelarve.csv')
columns_dont_want = ["Number", "Nimi", "Summa"]
select = [x for x in df.columns if x not in columns_dont_want]
df["Summa järel"] = df["Summa"] - df.loc[:, select]
df.to_csv('eelarve.csv', index=False)
CodePudding user response:
You can do drop
rsub
:
df.drop(columns=columns_dont_want).rsub(df['Summa'], axis=0)
output:
Kino
0 18.0
1 18.0
2 18.0
To join the other columns:
out = (df[columns_dont_want]
.join(df.drop(columns=columns_dont_want)
.rsub(df['Summa'], axis=0))
)
output:
Number Nimi Summa Kino
0 1 Jan 30.5 18.0
1 2 Pets 30.5 18.0
2 3 Anni 30.5 18.0
CodePudding user response:
I added more columns with data to the df to make sure the code below worked.
import pandas as pd
df = pd.DataFrame({'Number': [1, 2, 3],
'Nimi': ['Jan', 'Pets', 'Anni'],
'Summa': [30.5, 30.5, 30.5],
'Kino': [12.5, 12.5, 12.5],
'Test1': [0, 1, 2],
'Test2': [0.1, 0.2, 0.3]
})
columns_dont_want = ["Number", "Nimi", "Summa"]
select = [x for x in df.columns if x not in columns_dont_want]
df['Summa järel'] = df['Summa'] - df[select].sum(axis=1)
Output is:
Number Nimi Summa Kino Test1 Test2 Summa järel
0 1 Jan 30.5 12.5 0 0.1 17.9
1 2 Pets 30.5 12.5 1 0.2 16.8
2 3 Anni 30.5 12.5 2 0.3 15.7