I have created an autoencoder using a separate encoder and decoder as described in this link.
Split autoencoder on encoder and decoder keras
I am checkpointing my autoencoder as followed. How do I save the encoder and decoder separately corresponding to the autoencoder? Alternatively, can I extract deep encoder and decoder from my save autoencoder?
checkpoint = ModelCheckpoint(filepath, monitor='val_accuracy', verbose = 1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
autoencoder.fit(
x=x_train,
y=x_train,
epochs=10,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test),
callbacks=callbacks_list
)
CodePudding user response:
You could try to overwrite the autoencoder's save function, which the ModelCheckpoint uses, to have it save the encoder and decoder Models separately instead.
def custom_save(filepath, *args, **kwargs):
""" Overwrite save function to save the two sub-models """
global encoder, decoder
# fix name
path, ext = os.path.splitext(filepath)
# save encoder/decoder separately
encoder.save(path '-encoder.h5', *args, **kwargs)
decoder.save(path '-decoder.h5', *args, **kwargs)
auto_encoder = Model(auto_input, decoded)
setattr(auto_encoder, 'save', custom_save)
Make sure to set the save function BEFORE fit.