Suppose I have a data set that looks like this
Unique_Identifier Score1 Score2
112 50 60
113-114 50 70
115 40 20
116-117 30 90
118 70 70
Notice how some of my unique identifiers are listed as ranges, rather than exact values. I want to split up those ranges to each be 2 separate rows with the same scores so that it would look like this:
Unique_Identifier Score1 Score2
112 50 60
113 50 70
114 50 70
115 40 20
116 30 90
117 30 90
118 70 70
How would I go about doing this in Python using Pandas? I think there may be a way to test for rows that have a "-" in them, but I'm not sure how I would go about splitting those rows. I should also note that some identifier ranges have more than just 2 identifiers in them, such as 120-124.
CodePudding user response:
df.assign(Unique_Identifier=df.Unique_Identifier.str.split('-')).explode('Unique_Identifier')
Unique_Identifier Score1 Score2
0 112 50 60
1 113 50 70
1 114 50 70
2 115 40 20
3 116 30 90
3 117 30 90
4 118 70 70
CodePudding user response:
split
on "-" and create a list with the desired range
. Then explode
to individual rows:
df["Unique_Identifier"] = df["Unique_Identifier"].apply(lambda x: list(range(int(x.split("-")[0]),int(x.split("-")[1]) 1)) if "-" in x else [int(x)])
df = df.explode("Unique_Identifier")
>>> df
Unique_Identifier Score1 Score2
0 112 50 60
1 113 50 70
1 114 50 70
2 115 40 20
3 116 30 90
3 117 30 90
4 118 70 70
5 120 80 80
5 121 80 80
5 122 80 80
5 123 80 80
5 124 80 80