I need to create a XLSX
file containing the summary statistics (as in the summary()
function), but I am not being able to create a reliable way to separate each value (mean, median, NA's etc.) into separate rows for each variable from the original variables. Since my database has more than 200 variables, I do need to create a more systematic way, instead of manually deleting words in my XLSX
output.
After some research, I found some partial solutions, such as:
x1 <- as.data.frame(do.call(cbind, lapply(df, summary, is.numeric)))
x2 <- data.frame(unclass(summary(df1)), check.names = FALSE, stringsAsFactors = FALSE)
x3 <- as.data.frame(apply(df,2,summary))
x4 <- data.frame(df1=matrix(df1),row.names=names(df1))
And what I need is something like this:
y1 y2 y3 y4 y5
Min. 1.00 1.00 23.00 50.00 6.00
1st Qu. 31.75 3.75 30.50 57.25 11.75
Median 43.00 7.00 56.00 76.00 15.00
Mean 51.75 6.10 55.55 72.05 14.35
3rd Qu. 80.25 8.25 73.50 83.75 17.00
Max. 99.00 10.00 100.00 95.00 20.00
If someone would like to do some exercise, this database gives the same errors as my huge one:
x1 <- rpois(20,5)
x2 <- rexp(20,2)
x3 <- rexp(20,5); x3[1:10] <- NA_real_
x4 <- runif(20,5,10)
x5 <- runif(20,5,12)
df1 <- data.frame(x1,x2,x3,x4,x5)
Thanks in advance!
CodePudding user response:
considering an example dataframe with columns y1, y2, ..., yn to summarise:
library(tidyr)
library(dplyr)
data.frame(y1 = rnorm(100),
y2 = runif(100) ##, ... yn
) %>%
pivot_longer(starts_with('y'),
names_to = 'variable',
values_to = 'value'
) %>%
group_by(variable) %>%
summarise(Min = min(value, na.rm = TRUE),
Median = median(value, na.rm = TRUE) ##, ad libidum
) %>%
pivot_longer(-variable) %>%
pivot_wider(names_from = variable)
Generally, package {broom} offers convenient tidy
ing of summaries into tibbles:
library(broom)
summary(1:10) %>% tidy
lm(displ ~ cyl, data = mpg) %>% tidy
or, if you want wide instead of long table format (as in your example):
library(broom)
library(tidyr)
summary(1:10) %>%
tidy %>%
pivot_longer(everything(),
names_to = 'stat',
values_to = 'value'
)
CodePudding user response:
Consider casting summary
results to data.frame
, cleaning the columns, then reshape
the output:
summary_raw <- summary(df1)
# SPLIT Freq COLUMN AND SUBSET OUT NA ROWS
summary_long <- within(
data.frame(summary_raw), {
Var2 <- trimws(Var2)
Agg <- trimws(sapply(strsplit(Freq, ':'), "[", 1))
Num <- as.numeric(sapply(strsplit(Freq, ':'), "[", 2))
rm(Var1, Freq)
}
) |> subset(
!is.na(Agg) & !is.na(Num)
)
# RESHAPE TO WIDE
summary_wide <- reshape(
summary_long,
idvar = "Agg",
v.names = "Num",
timevar = "Var2",
direction = "wide",
) |> `row.names<-`(NULL)
colnames(summary_wide) <- gsub(
"Num\\.", "", names(summary_wide)
)
Input
set.seed(43022)
x1 <- rpois(20,5)
x2 <- rexp(20,2)
x3 <- rexp(20,5); x3[1:10] <- NA_real_
x4 <- runif(20,5,10)
x5 <- runif(20,5,12)
df1 <- data.frame(x1,x2,x3,x4,x5)
Output
> summary_wide
Agg x1 x2 x3 x4 x5
1 Min. 1.00 0.003004 0.009565 5.034 6.240
2 1st Qu. 3.00 0.086428 0.020734 6.903 7.323
3 Median 4.00 0.279303 0.035791 7.829 9.492
4 Mean 4.85 0.323793 0.098930 7.780 9.125
5 3rd Qu. 6.25 0.548857 0.067267 8.622 10.685
6 Max. 12.00 0.928066 0.523284 9.908 11.867
7 NA's NA NA 10.000000 NA NA
CodePudding user response:
Here a one-liner.
lapply(df1, summary) |> lapply(`length<-`, 6) |> do.call(what=rbind) |> t() |> round(2)
# x1 x2 x3 x4 x5
# Min. 1.00 0.03 0.03 5.23 5.48
# 1st Qu. 2.75 0.26 0.11 6.51 6.85
# Median 4.00 0.56 0.20 8.25 8.29
# Mean 4.55 0.57 0.24 7.94 8.29
# 3rd Qu. 6.00 0.70 0.28 9.43 9.57
# Max. 9.00 1.94 0.82 9.79 11.78
Just use summary
in an lapply
, adapt the length
s to 6
to remove the NA
display, rbind
, t
ranspose and round
it. Works for numeric data as in your example.
Note: R >= 4.1 used.