Let's say I have a 1D array and I want to obtain all the column indexes of the same numbers in this array and store them in separate arrays.
For example, all the numbers for 3 are in index 0,3,12, for 1 in index 4,5 etc.
x = np.array([3,6,8,3,1,1,5,8,5,0,2,0,3])
So the output would be
a = np.array([0,3,12]) # Number 3
b = np.array([1]) # Number 6
c = np.array([2,7]) # Number 8
d = np.array([4,5]) # Number 1
e = np.array([9,11]) # Number 0
f = np.array([6,8]) # Number 5
g = np.array([10]) # Number 2
CodePudding user response:
np.argwhere(x==3)
Outputs:
array([[ 0],
[ 3],
[12]])
Edit: if you want an 1D Array just use the flatten() method on the output
Most functions to search for indexes in numpy starts with arg for the next time ;)
CodePudding user response:
def same_num_index(arr):
output = {k:[] for k in set(arr)}
for i,x in enumerate(arr):
output[x].append(i)
return output
x = np.array([3,6,8,3,1,1,5,8,5,0,2,0,3])
index_of = same_num_index(x)
index_of[3]
produces:
[0, 3, 12]
Edit:
@jack's answer uses numpy built-in function and should be preferred