I have a DataFrame with columns that look like this:
df=pd.DataFrame(columns=['(NYSE_close, close)','(NYSE_close, open)','(NYSE_close, volume)', '(NASDAQ_close, close)','(NASDAQ_close, open)','(NASDAQ_close, volume)'])
df:
(NYSE_close, close) (NYSE_close, open) (NYSE_close, volume) (NASDAQ_close, close) (NASDAQ_close, open) (NASDAQ_close, volume)
I want to remove everything after the underscore and append whatever comes after the comma to get the following:
df:
NYSE_close NYSE_open NYSE_volume NASDAQ_close NASDAQ_open NASDAQ_volume
I tried to strip the column name but it replaced it with nan. Any suggestions on how to do that?
Thank you in advance.
CodePudding user response:
You could use re.sub
to extract the appropriate parts of the column names to replace them with:
import re
df=pd.DataFrame(columns=['(NYSE_close, close)','(NYSE_close, open)','(NYSE_close, volume)', '(NASDAQ_close, close)','(NASDAQ_close, open)','(NASDAQ_close, volume)'])
df.columns = [re.sub(r'\(([^_] _)\w , (\w )\)', r'\1\2', c) for c in df.columns]
Output:
Empty DataFrame
Columns: [NYSE_close, NYSE_open, NYSE_volume, NASDAQ_close, NASDAQ_open, NASDAQ_volume]
Index: []
CodePudding user response:
You could:
import re
def cvt_col(x):
s = re.sub('[()_,]', ' ', x).split()
return s[0] '_' s[2]
df.rename(columns = cvt_col)
Empty DataFrame
Columns: [NYSE_close, NYSE_open, NYSE_volume, NASDAQ_close, NASDAQ_open, NASDAQ_volume]
Index: []
CodePudding user response:
Use a list comprehension, twice:
step1 = [ent.strip('()').split(',') for ent in df]
df.columns = ["_".join([left.split('_')[0], right.strip()])
for left, right in step1]
df
Empty DataFrame
Columns: [NYSE_close, NYSE_open, NYSE_volume, NASDAQ_close, NASDAQ_open, NASDAQ_volume]
Index: []