Home > Back-end >  Python Convert Counters into DataFrame Columns
Python Convert Counters into DataFrame Columns

Time:05-21

I haven't been able to find an answer here specific to my issue and I'm wondering if I could get some help (apologies for the links, I'm not allowed to embed images yet).

I have stored Counter objects within my DataFrame and also want them added to the DataFrame as a column for each counted element.

Beginning data

data = {
    "words": ["ABC", "BCDB", "CDE", "F"],
    "stuff": ["abc", "bcda", "cde", "f"]
}
df = pd.DataFrame(data)

Preliminary Data Frame

patternData = {
    "name": ["A", "B", "C", "D", "E", "F"],
    "rex": ["A{1}", "B{1}", "C{1}", "D{1}", "E{1}", "F{1}"]
}
patterns = pd.DataFrame(patternData)

Pattern DataFrame

def countFound(ps):
    result = Counter()
    for index, row in patterns.iterrows():
        findName = row['name']
        findRex = row['rex']
        found = re.findall(findRex, ps)
        if (len(found) > 0):
            result.update({findName:len(found)})
    return result

df['found'] = df['words'].apply(lambda x: countFound(x))

Found DataFrame

Desired Results

words stuff found A B C D E F
ABC acb {'A': 1, 'B': 1, 'C': 1} 1 1 1 0 0 0
BCD bcd {'B': 1, 'C': 1, 'D': 1} 0 2 1 1 0 0
CDE cde {'C': 1, 'D': 1, 'E': 1} 0 0 1 1 1 0
F f {'F': 1} 0 0 0 0 0 1

CodePudding user response:

A Counter behaves a lot like a dictionary. Calling pd.DataFrame on a list of dictionaries will give you the matrix of counted values:

found = df['words'].apply(countFound).to_list()
pd.concat([
    df.assign(found=found),
    pd.DataFrame(found).fillna(0).astype("int")
], axis=1)

CodePudding user response:

You can use json_normalize:

df.join(pd.json_normalize(df['found']).fillna(0, downcast='infer'))

Output:

  words stuff                     found  A  B  C  D  E  F
0   ABC   abc  {'A': 1, 'B': 1, 'C': 1}  1  1  1  0  0  0
1  BCDB  bcda  {'B': 2, 'C': 1, 'D': 1}  0  2  1  1  0  0
2   CDE   cde  {'C': 1, 'D': 1, 'E': 1}  0  0  1  1  1  0
3     F     f                  {'F': 1}  0  0  0  0  0  1

You can also directly get the columns without your custom function. For this use a dynamically crafted regex with named capturing groups and str.extractall:

regex = ('(?P<' patterns['name'] '>' patterns['rex'] ')').str.cat(sep='|')
# (?P<A>A{1})|(?P<B>B{1})|(?P<C>C{1})|(?P<D>D{1})|(?P<E>E{1})|(?P<F>F{1})

df2 = df.join(df
 ['words']
 .str.extractall(regex)
 .groupby(level=0).count()
 )

Output:

  words stuff  A  B  C  D  E  F
0   ABC   abc  1  1  1  0  0  0
1  BCDB  bcda  0  2  1  1  0  0
2   CDE   cde  0  0  1  1  1  0
3     F     f  0  0  0  0  0  1
  • Related