Workflow =>
- Read CSV file and get Unit Price column data
- Convert column data price and create a new column as name 'Fabric'
- save the output as xlsx
Sample:
Unit Price
----------
330
350
380
I want to convert this data
Fabric
------
Card
Combed
Viscos
My code:
##Fabric Data
getFabric = df_new['Unit Price']
result = []
for fabric in getFabric:
if fabric == 310:
result.append("Card")
elif fabric == 330:
result.append("Combed Dawah")
elif fabric == 350:
result.append("Combed Regular")
elif fabric == 490:
result.append("Viscos")
elif fabric == 550:
result.append("Pleated")
else:
result.append(fabric)
df_new['Fabric'] = result
Error :
CodePudding user response:
That's easy dude...
your_df["Fabric"] = your_df["Unit Price"].apply(lambda x: str(x).replace("330", "Card"))
# do this for every conversion
your_df.to_csv("filename.csv")
The above code can be saved as a CSV file that could be viewed in MS EXCEL
CodePudding user response:
Insted of iterating column value. Try this,
pandas built-in function called .replace()
is useful for replacing the value in the column without iteration throung it
df_new['Unit Price'].replace({310: 'Card', 330: 'Combed Dawah', 350: 'Combed Regular', 490: 'Viscos', 550: 'Pleated'}, inplace=True)
Above code will successfully relace the dataframe column values inplace.