How do I identify by row id the values in data frame d2
column c3
that are not in data frame d1
column c1
? My which function returns all records when sub-setting as shown. My requirement is to follow this sub set structure and not value$field
design which works:
c1 <- c("A", "B", "C", "D", "E")
c2 <- c("a", "b", "c", "d", "e")
c3 <- c("A", "z", "C", "z", "E", "F")
c4 <- c("a", "x", "x", "d", "e", "f")
d1 <- data.frame(c1, c2, stringsAsFactors = F)
d2 <- data.frame(c3, c4, stringsAsFactors = F)
x <- unique(d1["c1"])
y <- d2[,"c3"]
id <- which(!(y %in% x) ) # incorrect, all row ids returned
I am trying to find the id's of rows in y where the specified column does not include values of x
CodePudding user response:
I believe setdiff
would work here. I see z
and F
are what you want, right? They are not in d1[,"c1"]
but are in d2[,"c3"]
includes <- setdiff(d2[,"c3"], d1[,"c1"])
d2_new <- d2[d2[,"c3"] %in% includes,]
d2_new$id <- rownames(d2_new)
d2_new
# or
ids <- rownames(d2[d2[,"c3"] %in% includes,])
output
d2_new
# c3 c4 id
#2 z x 2
#4 z d 4
#6 F f 6
ids
#[1] "2" "4" "6"