I've wondered how can I optimize the conditions to function that is flexible enough to return an index that has a limitation of 3 index
if(val === 0) return 0;
if (val === -90) return 3;
if (val === -180) return 2;
if (val === -270) return 1;
if (val === -360) return 0;
if (val === -450) return 3;
if(val === 0) return 0;
if (val === 90) return 1;
if (val === 180) return 2;
if (val === 270) return 3;
if (val === 360) return 0;
if (val === 450) return 1;
and so on
I wonder how to make a function that if a user increments by 90 the returns should get incremented with a limit of 3 then after 3 it will return 0 index
CodePudding user response:
function f(x) {
let z = x / 90;
let y = z % 4;
return y < 0 ? 4 y : y;
}
for(let i = -90 * 10; i <= 90 * 10; i = i 90) {
console.log(`x = ${i} => result => ${f(i)}`);
}
function f(x) {
return ((x / 90) % 4 4) % 4;
}
for(let i = -90 * 10; i <= 90 * 10; i = i 90) {
console.log(`x = ${i} => result => ${f(i)}`);
}
CodePudding user response:
you should get the minimum input first, then add 360 to it.
val = 360 val;
if(val % 360 === 90){
return 1
}
if(val % 360 === 180){
return 2
}
if(val % 360 === 270){
return 3
}
if(val % 360 === 0){
return 0
}
CodePudding user response:
You can try dividing by 90 for the positive numbers and for the negative numbers add 360 first then divide by 90.
CodePudding user response:
You can do (val % 360) / 90
if (val % 90 !== 0) return null.
return (val % 360) / 90;
CodePudding user response:
Try
const f = v => (v = v / 90 % 4, v < 0 ? 4 v : v | 0);
for (let i = -450; i <= 450; i = 90) {
console.log(`f(${i}) = ${f(i)}`);
}