I have a pandas dataframe with the following format
name | is_valid | account | transaction
Adam | True | debit | 10
Adam | False | credit | 10
Adam | True | credit | 10
Benj | True | credit | 10
Benj | False | debit | 10
Adam | True | credit | 10
I want to create two new columns credit_cumulative
and debit_cumulative
.
For credit_cumulative
, it counts the cumulative sum of the transaction column for the corresponding person, and for the corresponding account in that row, the transaction column will count only if is_valid column is true.
debit_cumulative wants to behave in the same way.
In the above example, the result should be:
from | is_valid | account | transaction | credit_cumulative | debit_cumulative
Adam | True | debit | 10 | 0 | 10
Adam | False | credit | 10 | 0 | 10
Adam | True | credit | 10 | 10 | 10
Benj | True | credit | 10 | 10 | 0
Benj | False | debit | 10 | 10 | 0
Adam | True | credit | 10 | 20 | 10
To illustrate, the first row is Adam, and account is debit, is_valid is true, so we increase debit_cumulative by 10.
For the second row, is_valid is negative. So transaction does not count. Name is Adam, is credit_cumulative and debit_cumulative will remain the same.
All rows shall behave this way.
Here is the code to the original data I described:
d = {'name': ['Adam', 'Adam', 'Adam', 'Benj', 'Benj', 'Adam'], 'is_valid': [True, False, True, True, False, True], 'account': ['debit', 'credit', 'credit', 'credit', 'debit', 'credit'], 'transaction': [10, 10, 10, 10, 10, 10]}
df = pd.DataFrame(data=d)
CodePudding user response:
Try:
# credit
mask = df.is_valid.eq(True) & df.account.eq("credit")
df.loc[mask, "credit_cumulative"] = (
df[mask].groupby(["name", "account"])["transaction"].cumsum()
)
df["credit_cumulative"] = df.groupby("name")["credit_cumulative"].apply(
lambda x: x.ffill().fillna(0)
)
# debit
mask = df.is_valid.eq(True) & df.account.eq("debit")
df.loc[mask, "debit_cumulative"] = (
df[mask].groupby(["name", "account"])["transaction"].cumsum()
)
df["debit_cumulative"] = df.groupby("name")["debit_cumulative"].apply(
lambda x: x.ffill().fillna(0)
)
print(df)
Prints:
name is_valid account transaction credit_cumulative debit_cumulative
0 Adam True debit 10 0.0 10.0
1 Adam False credit 10 0.0 10.0
2 Adam True credit 10 10.0 10.0
3 Benj True credit 10 10.0 0.0
4 Benj False debit 10 10.0 0.0
5 Adam True credit 10 20.0 10.0
CodePudding user response:
Here is a way to do what your question asks:
dfc = pd.concat([
df[['name','is_valid']],
df.transaction[df.account=='credit'].reindex(df.index, fill_value=0).rename('credit_cumulative'),
df.transaction[df.account=='debit'].reindex(df.index, fill_value=0).rename('debit_cumulative')
], axis=1)
dfc.loc[~dfc.is_valid, ['credit_cumulative', 'debit_cumulative']] = 0
df = pd.concat([df, dfc.drop(columns='is_valid').groupby('name').cumsum()], axis=1)
Output:
name is_valid account transaction credit_cumulative debit_cumulative
0 Adam True debit 10 0 10
1 Adam False credit 10 0 10
2 Adam True credit 10 10 10
3 Benj True credit 10 10 0
4 Benj False debit 10 10 0
5 Adam True credit 10 20 10
Explanation:
- Create a new dataframe that partitions
transaction
into two new columns for credit and debit and adds these to thename
andis_valid
columns of the original dataframe - Zero out these new columns where
is_valid
is False - Use
groupby().cumsum()
to aggregate these columns byname
- Use
concat()
to add thecumsum()
columns to the original dataframe.