I am having 2 sets of raster data and their names are:
ntl_'a number'.tif
pop_'a number'.tif
My goal is to create a function that reads the first pair of rasters (e.g., ntl_1.tif and pop_1.tif), then executes the below code and then repeats the process with the next pair:
library(raster)
library(DescTools)
#create a data.frame of values from the NTL and pop raster data
ntl = raster("path/ntl_1.tif")
vals_ntl <- as.data.frame(values(ntl))
ntl_coords = as.data.frame(xyFromCell(ntl, 1:ncell(ntl)))
combine <- as.data.frame(cbind(ntl_coords,vals_ntl))
pop<-raster("path/pop_1.tif")
pop = resample(pop, ntl, method = 'bilinear')
vals_pop <- as.data.frame(values(pop))
block.data <- as.data.frame(cbind(combine, vals_pop))
names(block.data)[3] <- "ntl"
names(block.data)[4] <- "pop"
block.data <- na.omit(block.data)
block.data = subset(block.data, select = -c(x, y))
# sort by ntl
block.data <-block.data[order(block.data$ntl),]
ntl_vector <- block.data[ , "ntl"]
pop_vector <- block.data[ , "pop"]
#compute gini index
Gini(ntl_vector, pop_vector, unbiased = FALSE)
My issue is with the code inside the function, I do not know how to properly make the syntax (the above code is for a pair of raster while I have hundreds of pairs). Hopefully I can get the results (i.e., the gini coefficient) of every pair in my console or, even better, in a data.frame
. The data are here.
CodePudding user response:
library(purrr)
library(fs)
raster_gini <- function(
.ntl = "ntl_1.tif",
.pop = "pop_1.tif",
.rdgal = TRUE
) {
if(.rdgal) {
ntl = raster(.ntl)
vals_ntl <- as.data.frame(values(ntl))
ntl_coords = as.data.frame(xyFromCell(ntl, 1:ncell(ntl)))
combine <- as.data.frame(cbind(ntl_coords,vals_ntl))
pop<-raster(.pop)
pop = resample(pop, ntl, method = 'bilinear')
vals_pop <- as.data.frame(values(pop))
block.data <- as.data.frame(cbind(combine, vals_pop))
#rename the columns
names(block.data)[3] <- "ntl"
names(block.data)[4] <- "pop"
#remove NA values
block.data <- na.omit(block.data)
#remove the columns x & y
block.data = subset(block.data, select = -c(x, y))
# sort by ntl
block.data <-block.data[order(block.data$ntl),]
ntl_vector <- block.data[ , "ntl"]
pop_vector <- block.data[ , "pop"]
#compute gini index
gini <- Gini(ntl_vector, pop_vector, unbiased = FALSE)
c(ntl = .ntl, pop = .pop, gini = gini)
} else {
c(ntl = .ntl, pop = .pop)
}
}
doc_paths_ntl <- fs::dir_ls("path_to_ntl_raster", glob = "*tif*")
doc_paths_pop <- fs::dir_ls("path_to_pop_raster", glob = "*tif*")
result_df <- purrr::map2_dfr(.x = doc_paths_ntl, .y = doc_paths_pop, .f = raster_gini)
result_df <- result_df |>
dplyr::mutate(ntl = basename(ntl)) |>
dplyr::mutate(pop = basename(pop))
result_df