Home > Back-end >  how to configure the layouts for like this input and output example in tensorFlow and keras
how to configure the layouts for like this input and output example in tensorFlow and keras

Time:07-21

I have those input and output, and i want to configure the layouts using TensorFlow and Keras:

input = [[5, 3, 10], [2, 1, 2], [6,2,9], [1,1,0], [10, 4, 3], [3, 5, 6], [8, 1, 10], [4, 4, 3],[7, 3, 6], [4, 2, 12]] # 
output = [2000, 500, 2100, 300, 3000, 1200, 3400, 1300, 2500, 1900] 

I have tried this but doesn't work:

model = tf.keras.Sequential([
          tf.keras.layers.Dense(1, input_shape=(1,10))
])
model.compile(loss='mean_squared_error', optimizer= tf.keras.optimizers.Adam(learning_rate=0.1))
model.fit(input, output, epochs=800, verbose=False)
predict = model.predict([20,6,2])
print(predict)

CodePudding user response:

Try changing your input shape to (3,), since each samples has 3 features and when making predictions, add an additional dimension for the batch size:

import tensorflow as tf

input = [[5, 3, 10], [2, 1, 2], [6,2,9], [1,1,0], [10, 4, 3], [3, 5, 6], [8, 1, 10], [4, 4, 3],[7, 3, 6], [4, 2, 12]] # 
output = [2000, 500, 2100, 300, 3000, 1200, 3400, 1300, 2500, 1900]

model = tf.keras.Sequential([
          tf.keras.layers.Dense(1, input_shape=(3, ))
])
model.compile(loss='mean_squared_error', optimizer= tf.keras.optimizers.Adam(learning_rate=0.1))
model.fit(input, output, epochs=800, verbose=False)
predict = model.predict([[20,6,2]])
print(predict)
[[1993.9138]]
  • Related