Home > Back-end >  Repeating a date in polars and exploding it
Repeating a date in polars and exploding it

Time:07-30

I have a polars dataframe with two date columns that represent a start and end date and then a value that I want to repeat for all dates in between those two dates so that I can join those on other tables.

Example input is

id start end value
123 2022-01-01 2022-01-04 10
abc 2022-03-04 2022-03-04 3
456 2022-05-11 2022-05-16 4

and expected output is

id date value
123 2022-01-01 10
123 2022-01-02 10
123 2022-01-03 10
123 2022-01-04 10
abc 2022-03-04 3
456 2022-05-11 4
456 2022-05-12 4
456 2022-05-13 4
456 2022-05-14 4
456 2022-05-15 4
456 2022-05-16 4

CodePudding user response:

I struggled today with the same problem and I thought I share my solution.

As cbilot already mentions pl.dat_range doesn't take expressions as low and high value. So I worked around by using apply.

Data:

import polars as pl
from datetime import date

df = pl.DataFrame(
    {
        "id": ["123", "abc", "456"],
        "start": [date(2022, 1, 1), date(2022, 3, 4), date(2022, 5, 11)],
        "end": [date(2022, 1, 4), date(2022, 3, 4), date(2022, 5, 16)],
        "value": [10, 3, 4],
    }
)

Solution:

(
    df.with_columns(
        [(pl.struct(["start", "end"])
            .apply(lambda x: pl.date_range(x["start"], x["end"], "1d"))
            .alias("date"))])
    .explode(pl.col("date"))
    .select(["id", "date", "value"])
)


shape: (11, 3)
┌─────┬────────────┬───────┐
│ id  ┆ date       ┆ value │
│ --- ┆ ---        ┆ ---   │
│ str ┆ date       ┆ i64   │
╞═════╪════════════╪═══════╡
│ 123 ┆ 2022-01-01 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-02 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-03 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-04 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ ... ┆ ...        ┆ ...   │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-13 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-14 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-15 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-16 ┆ 4     │
└─────┴────────────┴───────┘

CodePudding user response:

Starting with this data:

import polars as pl
from datetime import date

df = pl.DataFrame(
    {
        "id": ["123", "abc", "456"],
        "start": [date(2022, 1, 1), date(2022, 3, 4), date(2022, 5, 11)],
        "end": [date(2022, 1, 4), date(2022, 3, 4), date(2022, 5, 16)],
        "value": [10, 3, 4],
    }
)
df
shape: (3, 4)
┌─────┬────────────┬────────────┬───────┐
│ id  ┆ start      ┆ end        ┆ value │
│ --- ┆ ---        ┆ ---        ┆ ---   │
│ str ┆ date       ┆ date       ┆ i64   │
╞═════╪════════════╪════════════╪═══════╡
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ abc ┆ 2022-03-04 ┆ 2022-03-04 ┆ 3     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     │
└─────┴────────────┴────────────┴───────┘

The Algorithm

(
    df.with_columns(
        [pl.arange(pl.col("start"), pl.col("end")   1).alias("date")])
    .explode("date")
    .with_column(pl.col("date").cast(pl.Date))
    .select(["id", "date", "value"])
)
shape: (11, 3)
┌─────┬────────────┬───────┐
│ id  ┆ date       ┆ value │
│ --- ┆ ---        ┆ ---   │
│ str ┆ date       ┆ i64   │
╞═════╪════════════╪═══════╡
│ 123 ┆ 2022-01-01 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-02 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-03 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-04 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ abc ┆ 2022-03-04 ┆ 3     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-12 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-13 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-14 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-15 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-16 ┆ 4     │
└─────┴────────────┴───────┘

In steps

Normally, we create a range of dates using the date_range expression. However, date_range does not take an Expression as its low and high parameters.

However, arange does allow Expressions as its low and high parameters. We can (implicitly) cast the start and end dates to integers, which represent the number of days since the UNIX epoch.

The result is a list of integers which represents the days between (and including) the start and end dates (expressed as days since the UNIX epoch)..

Notice that we have to add 1 to the high parameter to make sure we capture the end date.

(
    df.with_columns(
        [pl.arange(pl.col("start"), pl.col("end")   1).alias("date")])
)
shape: (3, 5)
┌─────┬────────────┬────────────┬───────┬───────────────────────────┐
│ id  ┆ start      ┆ end        ┆ value ┆ date                      │
│ --- ┆ ---        ┆ ---        ┆ ---   ┆ ---                       │
│ str ┆ date       ┆ date       ┆ i64   ┆ list[i64]                 │
╞═════╪════════════╪════════════╪═══════╪═══════════════════════════╡
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    ┆ [18993, 18994, ... 18996] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ abc ┆ 2022-03-04 ┆ 2022-03-04 ┆ 3     ┆ [19055]                   │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ [19123, 19124, ... 19128] │
└─────┴────────────┴────────────┴───────┴───────────────────────────┘

Next we can use explode to place each of the integers on a separate row.

(
    df.with_columns(
        [pl.arange(pl.col("start"), pl.col("end")   1).alias("date")])
    .explode("date")
)
shape: (11, 5)
┌─────┬────────────┬────────────┬───────┬───────┐
│ id  ┆ start      ┆ end        ┆ value ┆ date  │
│ --- ┆ ---        ┆ ---        ┆ ---   ┆ ---   │
│ str ┆ date       ┆ date       ┆ i64   ┆ i64   │
╞═════╪════════════╪════════════╪═══════╪═══════╡
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    ┆ 18993 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    ┆ 18994 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    ┆ 18995 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-01 ┆ 2022-01-04 ┆ 10    ┆ 18996 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ abc ┆ 2022-03-04 ┆ 2022-03-04 ┆ 3     ┆ 19055 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19123 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19124 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19125 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19126 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19127 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 2022-05-16 ┆ 4     ┆ 19128 │
└─────┴────────────┴────────────┴───────┴───────┘

The final step is to cast the date column back to a pl.Date, and then select only the columns that we want.

(
    df.with_columns(
        [pl.arange(pl.col("start"), pl.col("end")   1).alias("date")])
    .explode("date")
    .with_column(pl.col("date").cast(pl.Date))
    .select(["id", "date", "value"])
)
shape: (11, 3)
┌─────┬────────────┬───────┐
│ id  ┆ date       ┆ value │
│ --- ┆ ---        ┆ ---   │
│ str ┆ date       ┆ i64   │
╞═════╪════════════╪═══════╡
│ 123 ┆ 2022-01-01 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-02 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-03 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 123 ┆ 2022-01-04 ┆ 10    │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ abc ┆ 2022-03-04 ┆ 3     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-11 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-12 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-13 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-14 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-15 ┆ 4     │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 456 ┆ 2022-05-16 ┆ 4     │
└─────┴────────────┴───────┘
  • Related