I'm trying to merge two dfs (basically th same df at different time) using pd.concat.
here is my code:
Aujourdhui = datetime.datetime.now()
Aujourdhui = (Aujourdhui.strftime("%X"))
PerfsL1 = pd.read_html('https://fbref.com/fr/comps/13/stats/Statistiques-Ligue-1#all_stats_standard', header=1)[0]
PerfsL1.columns = ['Équipe', 'Used_players', 'age', 'Possesion', "nb_matchs", "Starts", "Min",
'90s','Buts','Assists', 'No_penaltis', 'Penaltis', 'Penaltis_tentes',
'Cartons_jaunes', 'Cartons_rouges', 'Buts/90mn','Assists/90mn', 'B A /90mn',
'NoPenaltis/90mn', 'B A P/90mn','Exp_buts','Exp_NoPenaltis', 'Exp_Assists', 'Exp_NP A',
'Exp_buts/90mn', 'Exp_Assists/90mn','Exp_B A/90mn','Exp_NoPenaltis/90mn', 'Exp_NP A/90mn']
PerfsL1.insert(0, "Date", Aujourdhui)
print(PerfsL1)
PerfsL12 = pd.read_csv('Ligue_1_Perfs.csv', index_col=0)
print(PerfsL12)
PerfsL1 = pd.concat([PerfsL1, PerfsL12], ignore_index = True)
print (PerfsL1)
I successfully managed to get both df individually which are sharing the same columns, but I can't merge them, getting
ValueError: no types given.
Do you have an idea where it could be coming from ?
EDIT Here are both dataframes:
'Ligue_1.csv'
Date Équipe Used_players age Possesion nb_matchs ... Exp_NP A Exp_buts/90mn Exp_Assists/90mn Exp_B A/90mn Exp_NoPenaltis/90mn Exp_NP A/90mn
0 00:37:48 Ajaccio 18 29.1 34.5 2 ... 1.6 0.97 0.24 1.20 0.57 0.81
1 00:37:48 Angers 18 26.8 55.0 2 ... 5.9 1.78 1.18 2.96 1.78 2.96
2 00:37:48 Auxerre 15 29.4 39.5 2 ... 3.3 0.83 0.80 1.63 0.83 1.63
3 00:37:48 Brest 18 26.8 42.5 2 ... 5.0 1.67 1.23 2.90 1.28 2.51
4 00:37:48 Clermont Foot 18 27.8 48.5 2 ... 1.8 0.89 0.38 1.27 0.50 0.88
5 00:37:48 Lens 16 26.2 63.0 2 ... 5.6 1.92 1.29 3.21 1.53 2.82
6 00:37:48 Lille 18 27.2 65.0 2 ... 7.3 2.02 1.65 3.66 2.02 3.66
7 00:37:48 Lorient 14 25.8 36.0 1 ... 0.6 0.37 0.26 0.63 0.37 0.63
8 00:37:48 Lyon 15 26.0 68.0 1 ... 1.2 1.52 0.49 2.00 0.73 1.22
9 00:37:48 Marseille 17 26.9 55.0 2 ... 4.9 1.40 1.03 2.43 1.40 2.43
10 00:37:48 Monaco 19 24.8 40.5 2 ... 7.1 2.74 1.19 3.93 2.35 3.54
11 00:37:48 Montpellier 19 25.5 47.5 2 ... 3.2 0.93 0.66 1.59 0.93 1.59
12 00:37:48 Nantes 16 26.9 40.5 2 ... 3.9 1.37 0.60 1.97 1.37 1.97
13 00:37:48 Nice 18 25.9 54.0 2 ... 3.1 1.25 0.69 1.94 0.86 1.55
14 00:37:48 Paris S-G 18 27.6 60.0 2 ... 8.1 3.05 1.76 4.81 2.27 4.03
print(PerfsL1 = pd.read_html('https://fbref.com/fr/comps/13/stats/Statistiques-Ligue-1#all_stats_standard', header=1)[0])
Date Équipe Used_players age Possesion nb_matchs ... Exp_NP A Exp_buts/90mn Exp_Assists/90mn Exp_B A/90mn Exp_NoPenaltis/90mn Exp_NP A/90mn
0 09:56:18 Ajaccio 18 29.1 34.5 2 ... 1.6 0.97 0.24 1.20 0.57 0.81
1 09:56:18 Angers 18 26.8 55.0 2 ... 5.9 1.78 1.18 2.96 1.78 2.96
2 09:56:18 Auxerre 15 29.4 39.5 2 ... 3.3 0.83 0.80 1.63 0.83 1.63
3 09:56:18 Brest 18 26.8 42.5 2 ... 5.0 1.67 1.23 2.90 1.28 2.51
4 09:56:18 Clermont Foot 18 27.8 48.5 2 ... 1.8 0.89 0.38 1.27 0.50 0.88
5 09:56:18 Lens 16 26.2 63.0 2 ... 5.6 1.92 1.29 3.21 1.53 2.82
6 09:56:18 Lille 18 27.2 65.0 2 ... 7.3 2.02 1.65 3.66 2.02 3.66
7 09:56:18 Lorient 14 25.8 36.0 1 ... 0.6 0.37 0.26 0.63 0.37 0.63
8 09:56:18 Lyon 15 26.0 68.0 1 ... 1.2 1.52 0.49 2.00 0.73 1.22
9 09:56:18 Marseille 17 26.9 55.0 2 ... 4.9 1.40 1.03 2.43 1.40 2.43
10 09:56:18 Monaco 19 24.8 40.5 2 ... 7.1 2.74 1.19 3.93 2.35 3.54
11 09:56:18 Montpellier 19 25.5 47.5 2 ... 3.2 0.93 0.66 1.59 0.93 1.59
12 09:56:18 Nantes 16 26.9 40.5 2 ... 3.9 1.37 0.60 1.97 1.37 1.97
13 09:56:18 Nice 18 25.9 54.0 2 ... 3.1 1.25 0.69 1.94 0.86 1.55
Thanks you for your support and have a great day !
CodePudding user response:
Please show a example of "Ligue_1_Perfs.csv".
CodePudding user response:
Your code should work.
Nevertheless, try this before the concat:
PerfsL1 = PerfsL1.reset_index()
PerfsL2 = PerfsL2.reset_index()