Context: I'm trying to sum all values based in a list only if they start with or contain a string
So with a config file like this:
{
'exclude_granularity':True,
'granularity_suffix_list':['A','B']
}
And a dataframe like this:
tt = pd.DataFrame({'A_2':[1,2,3],'A_3':[3,4,2],'B_4':[5,2,1],'B_1':[8,2,1],'C_3':[2,4,2})
How can I group by if they all start by a given substring present on the granularity_suffix_list?
Desired output:
A B C_3
0 4 13 2
1 6 4 4
2 5 2 2
Attempts: I was trying this:
if exclude_granularity == True:
def correct_categories(cols):
return [cat if col.startswith(cat) else col for col in cols for cat in granularity_suffix_list]
df= df.groupby(correct_categories(df.columns),axis=1).sum()
But It doesn't work. Instead, the function returns a list like ['A_2','A','A_3','A',B_4','B'...]
Thank you
CodePudding user response:
Okay finally managed to solve what I wanted
Posting the solution if anyone finds it relevant
tt = pd.DataFrame({'A_2':[1,2,3],'A_3':[3,4,2],'B_4':[5,2,1],'B_1':[8,2,1],'C_3':[2,4,2]})
granularity_suffix_list = ['A','B']
def correct_categories(cols_to_aggregate):
lst = []
for _, column in enumerate(cols_to_aggregate):
if not column.startswith(tuple(granularity_suffix_list)):
lst.append(column)
else:
lst.append(granularity_suffix_list[
[i for i, w in enumerate(granularity_suffix_list) if column.startswith(w)][0]
])
return lst
df = tt.groupby(correct_categories(tt.columns),axis=1).sum()
CodePudding user response:
You could write that a bit more compact:
def grouper(c):
for suffix in granularity_suffix_list:
if c.startswith(suffix):
return suffix
return c
df = tt.groupby(grouper, axis=1).sum()
Or if you're not opposed to using re
:
import re
re_suffix = re.compile("|".join(map(re.escape, granularity_suffix_list)))
def grouper(c):
return m[0] if (m := re_suffix.match(c)) else c
df = tt.groupby(grouper, axis=1).sum()
Another option would be:
pat = f"^({'|'.join(granularity_suffix_list)})"
suffixes = tt.columns.str.extract(pat, expand=False)
df = tt.groupby(suffixes.where(suffixes.notna(), tt.columns), axis=1).sum()