I have a pandas data frame where I extract minima and extrema values. It work good so far, but the problem is how can I place them by Date (chronological order) into a list? They are separated into two list and I only want one price values list with them being in chronological order
import pandas as pd
import numpy as np
import yfinance
from scipy.signal import argrelextrema
import matplotlib.dates as mpl_dates
def extract_data():
ticker = 'GBPJPY=X'
ticker = yfinance.Ticker(ticker)
start_date = '2022-09-25'
end_date = '2022-10-08'
df = ticker.history(interval='1h', start=start_date, end=end_date)
df['Date'] = pd.to_datetime(df.index)
df['Date'] = df['Date'].apply(mpl_dates.date2num)
df = df.loc[:, ['Date', 'Open', 'High', 'Low', 'Close']]
# Call function to find Min-Max Extrema
find_extrema(df)
def find_extrema(df):
n = 10 # number of points to be checked before and after
# Find local peaks
df['min'] = df.iloc[argrelextrema(df.Close.values, np.less_equal,
order=n)[0]]['Close']
df['max'] = df.iloc[argrelextrema(df.Close.values, np.greater_equal,
order=n)[0]]['Close']
min_values_list = []
max_values_list = []
# Add min value to list
for item in df['min']:
check_NaN = np.isnan(item) # check if values is empty
if check_NaN == True:
pass
else:
min_values_list.append(item)
# Add max values to list
for item in df['max']:
check_NaN = np.isnan(item) # check if values is empty
if check_NaN == True:
pass
else:
max_values_list.append(item)
print(f"Min: {min_values_list}")
print(f"Max: {max_values_list}")
extract_data()
CodePudding user response:
Option 1
- First, use
df.to_numpy
to convert columnsmin
andmax
to anp.array
. - Get rid of all the NaN values by selecting from the array using
np.logical_or
applied to a boolean mask (created withnp.isnan
).
arr = df[['min','max']].to_numpy()
value_list = arr[np.logical_not(np.isnan(arr))].tolist()
print(value_list)
[159.7030029296875,
154.8979949951172,
160.7830047607422,
165.43800354003906,
149.55799865722656,
162.80499267578125,
156.6529998779297,
164.31900024414062,
156.125,
153.13499450683594,
161.3520050048828,
156.9340057373047,
162.52200317382812,
155.7740020751953,
160.98500061035156,
161.83700561523438]
Option 2
Rather more cumbersome:
n = 10
# get the indices for `min` and `max` in two arrays
_min = argrelextrema(df.Close.values, np.less_equal, order=n)[0]
_max = argrelextrema(df.Close.values, np.greater_equal, order=n)[0]
# create columns (assuming you need this for other purposes as well)
df['min'] = df.iloc[_min]['Close']
df['max'] = df.iloc[_max]['Close']
# create lists for `min` and `max`
min_values_list = df['min'].dropna().tolist()
max_values_list = df['max'].dropna().tolist()
# join the lists
value_list2 = min_values_list max_values_list
value_idxs = _min.tolist() _max.tolist()
# finally, sort `value_list2` based on `value_idxs`
value_list2 = [x for _, x in sorted(zip(value_idxs, value_list2))]
# check if result is the same:
value_list2 == value_list
# True