I have the following list where double brackets indicate a new element:
[[[33.79277702, -104.3900481],
[35.79415582, -104.39016576],
[38.7939, -107.31792],
[31.792589, -188.38847],
[36.79221, -108.388367],
[36.79238003, -108.38905313]],
[[38.1726905, -54.85042496],
[30.179095, -84.88893],
[36.17621409, -84.78],
[39.17534035, -84.8481921],
[31.17427369, -84.8499793],
[50.17466907, -84.8578298]],
[[46.71949073, -109.69390116],
[46.72091429, -109.69484574],
[46.72077, -107.69432],
[46.7199, -107.6916]],
[[43.60399, -76.963267], [43.60534111, -79.96221766], [43.6049, -78.9613]],
[[41.93863726, -81.33993917],
[43.93630951, -81.33862768],
[43.9369507, -81.33917589]],
[[12.19490918, -103.10334755],
[34.19538203, -124.10439655],
[22.19548313, -194.10379399],
[22.19505863, -194.10286483]],
[[38.99843815, -107.81278381],
[38.99904541, -107.81251648],
[38.99930408, -107.81234494],
[32.99882888, -102.81252263]],
[[36.3735, -161.8463], [36.3741, -161.8481], [36.374, -161.8466]]]
I would like to convert this list into the following dataframe model (where each list element corresponds to a dataframe row).
polygon
[[[[33.79277702, -104.3900481],[35.79415582,-104.39016576],
[38.7939, -107.31792], [31.792589, -188.38847],
[36.79221, -108.388367],[36.79238003, -108.38905313]]]
[[[38.1726905, -54.85042496],[30.179095, -84.88893],
[36.17621409, -84.78],[39.17534035, -84.8481921],
[31.17427369, -84.8499793],[50.17466907, -84.8578298]]]
...
How can I indicate that the list has to be break by double bracket instead of traditional coma ?
CodePudding user response:
If I get your question, you can transform your list of lists to dict:
polygon = [[[33.79277702, -104.3900481], [35.79415582, -104.39016576],
[38.7939, -107.31792], [31.792589, -188.38847],
[36.79221, -108.388367], [36.79238003, -108.38905313]],
[[38.1726905, -54.85042496], [30.179095, -84.88893],
[36.17621409, -84.78], [39.17534035, -84.8481921],
[31.17427369, -84.8499793], [50.17466907, -84.8578298]],
[[46.71949073, -109.69390116], [46.72091429, -109.69484574],
[46.72077, -107.69432], [46.7199, -107.6916]],
[[43.60399, -76.963267], [43.60534111, -79.96221766],
[43.6049, -78.9613]],
[[41.93863726, -81.33993917], [43.93630951, -81.33862768],
[43.9369507, -81.33917589]],
[[12.19490918, -103.10334755], [34.19538203, -124.10439655],
[22.19548313, -194.10379399], [22.19505863, -194.10286483]],
[[38.99843815, -107.81278381], [38.99904541, -107.81251648],
[38.99930408, -107.81234494], [32.99882888, -102.81252263]],
[[36.3735, -161.8463], [36.3741, -161.8481], [36.374, -161.8466]]]
df = pd.DataFrame({'polygon': polygon})
polygon
0 [[33.79277702, -104.3900481], [35.79415582, -1...
1 [[38.1726905, -54.85042496], [30.179095, -84.8...
2 [[46.71949073, -109.69390116], [46.72091429, -...
3 [[43.60399, -76.963267], [43.60534111, -79.962...
4 [[41.93863726, -81.33993917], [43.93630951, -8...
5 [[12.19490918, -103.10334755], [34.19538203, -...
6 [[38.99843815, -107.81278381], [38.99904541, -...
7 [[36.3735, -161.8463], [36.3741, -161.8481], [...