I have quite a complex If statement that I would like to add as a column in my pandas dataframe. In the past I've always used numpy.select for this type of problem, however I wouldn't know how to achieve that with a multi-line if statement.
I was able to get this in Excel:
=IF(sum1=3,IF(AND(col1=col2,col2=col3),0,1),IF(sum1=2,IF(OR(col1=col2,col2=col3,col1=col3),0,1),IF(sum1=1,0,1)))
and write it in Python just as a regular multi-line 'if statement', just want to find out if there is a far cleaner way of presenting this.
if df['sum1'] == 3:
if df['col1'] == df['col2'] and df['col2'] == df['col3']:
df['verify_col'] = 0
else:
df['verify_col'] = 1
elif df['sum1'] == 2:
if df['col1'] == df['col2'] or df['col2'] == df['col3'] or df['col1'] == df['col3']:
df['verify_col'] = 0
else:
df['verify_col'] = 1
elif df['sum1'] == 1:
df['verify_col'] = 0
else:
df['verify_col'] = 1
Here's some sample data:
df = pd.DataFrame({
'col1': ['BMW', 'Mercedes Benz', 'Lamborghini', 'Ferrari', null],
'col2': ['BMW', 'Mercedes Benz', null, null, 'Tesla'],
'col3': ['BMW', 'Mercedes', 'Lamborghini', null, 'Tesla_'],
'sum1': [3, 3, 2, 1, 2]
})
I want a column which has the following results:
'verify_col': [0, 1, 0, 0, 1]
It basically checks whether the columns match for those that have values in them and assigns a 1 or a 0 for each row. 1 meaning they are different, 0 meaning zero difference.
CodePudding user response:
Use numpy.where
with chain mask with |
for bitwise OR
- if no match any conditions is created 1
:
m1 = (df['sum1'] == 3)
m2 = (df['col1'] == df['col2']) & (df['col2'] == df['col3'])
m3 = (df['sum1'] == 2)
m4 = (df['col1'] == df['col2']) | (df['col2'] == df['col3']) | (df['col1'] == df['col3'])
m5 = df['sum1'] == 1
df['verify_col'] = np.where((m1 & m2) | (m3 & m4) | m5, 0, 1)
If need None
if no match any conditions:
df['verify_col'] = np.select([(m1 & m2) | (m3 & m4) | m5,
(m1 & ~m2) | (m3 & ~m4) | ~m5],
[0,1], default=None)
print (df)
col1 col2 col3 sum1 verify_col
0 BMW BMW BMW 3 0
1 Mercedes Benz Mercedes Benz Mercedes 3 1
2 Lamborghini NaN Lamborghini 2 0
3 Ferrari NaN NaN 1 0
4 NaN Tesla Tesla_ 2 1
CodePudding user response:
One option is with case_when from pyjanitor:
# pip install pyjanitor
import pandas as pd
import janitor
(df
.case_when(
# condition, result
df.sum1.eq(3) & df.col1.eq(df.col2) & df.col2.eq(df.col3), 0,
df.sum1.eq(3), 1,
df.sum1.eq(2) & (df.col1.eq(df.col2) | df.col2.eq(df.col3) | df.col1.eq(df.col3)), 0,
df.sum1.eq(2), 1,
df.sum1.eq(1), 0,
1, # default
column_name='verify_col')
)
col1 col2 col3 sum1 verify_col
0 BMW BMW BMW 3 0
1 Mercedes Benz Mercedes Benz Mercedes 3 1
2 Lamborghini None Lamborghini 2 0
3 Ferrari None None 1 0
4 None Tesla Tesla_ 2 1
Of course, you can do this with np.select
:
conditions = [df.sum1.eq(3) & df.col1.eq(df.col2) & df.col2.eq(df.col3),
df.sum1.eq(3),
df.sum1.eq(2) & (df.col1.eq(df.col2) | df.col2.eq(df.col3) |
df.col1.eq(df.col3)),
df.sum1.eq(2),
df.sum1.eq(1)]
results = [0,1,0,1,0]
outcome = np.select(conditions, results, default=1)
df.assign(verify_col = outcome)
col1 col2 col3 sum1 verify_col
0 BMW BMW BMW 3 0
1 Mercedes Benz Mercedes Benz Mercedes 3 1
2 Lamborghini None Lamborghini 2 0
3 Ferrari None None 1 0
4 None Tesla Tesla_ 2 1
CodePudding user response:
df['verify_col'] = (~(((df["col1"] == df["col2"]) | df["col1"].isna() | df["col2"].isna()) & ((df["col2"] == df["col3"]) | df["col2"].isna() | df["col3"].isna()))).astype(int)