I have this exercise and the goal is to solve it with complexity less than O(n^2).
You have an array with length N filled with event probabilities. Create another array in which for each element i calculate the probability of all event to happen until the position i.
I have coded this O(n^2) solution. Any ideas how to improve it?
probabilityTable = [0.1, 0.54, 0.34, 0.11, 0.55, 0.75, 0.01, 0.06, 0.96]
finalTable = list()
for i in range(len(probabilityTable)):
finalTable.append(1)
for j in range(i):
finalTable[i] *= probabilityTable[j]
for item in finalTable:
print(item)
CodePudding user response:
probabilityTable = [0.1, 0.54, 0.34, 0.11, 0.55, 0.75, 0.01, 0.06, 0.96]
finalTable = probabilityTable.copy()
for i in range(1, len(probabilityTable)):
finalTable[i] = finalTable[i] * finalTable[i - 1]
for item in finalTable:
print(item)
CodePudding user response:
new_probs = [probabilityTable[0]]
for prob in probabilityTable[1:]:
new_probs.append(new_probs[-1] prob)