zed = pd.DataFrame(data = { 'date': ['2022-03-01', '2022-03-02', '2022-03-03', '2022-03-04', '2022-03-05'], 'a': [1, 5, 7, 3, 4], 'b': [3, 4, 9, 12, 5] })
How can the following dataframe be filtered to keep the earliest row (earliest == lowest date) for each of the 3 values 1, 5, 4
appearing in either column a
or column b
? In this example, the rows with dates '2022-03-01'
, '2022-03-02'
would be kept as they are the lowest dates where each of the 3 values appears?
We have tried zed[zed.isin({'a': [1, 5, 4], 'b': [1, 5, 4]}).any(1)].sort_values(by=['date'])
but this returns the incorrect result as it returns 3 rows.
CodePudding user response:
Without reshape your dataframe, you can use:
idx = max([zed[['a', 'b']].eq(i).sum(axis=1).idxmax() for i in [1, 5, 4]])
out = zed.loc[:idx]
Output:
>>> out
date a b
0 2022-03-01 1 3
1 2022-03-02 5 4
CodePudding user response:
You can reshape by DataFrame.stack
, so possible filterin gby list with remove duplicates:
s = zed.set_index('date')[['a','b']].stack()
idx = s[s.isin([1, 5, 4])].drop_duplicates().index.remove_unused_levels().levels[0]
print (idx)
Index(['2022-03-01', '2022-03-02'], dtype='object', name='date')
out = zed[zed['date'].isin(idx)]
print (out)
date a b
0 2022-03-01 1 3
1 2022-03-02 5 4
Or filter first index value matching conditions, get unique values and select rows by DataFrame.loc
:
L = [1, 5, 4]
idx = pd.unique([y for x in L for y in zed[zed[['a', 'b']].eq(x).any(axis=1)].index[:1]])
df = zed.loc[idx]
print (df)
date a b
0 2022-03-01 1 3
1 2022-03-02 5 4