I have a dataframe with different columns, one of which tells me if data in other columns can be "trusted" or not, containing a "yes" or a no" (column name: "inside_calibration_range"). What I would like to do is simply to replace the values in the whole row with "NA" every time I have a "no" in the "inside_calibration_range" column.
I gave it a look to dplyr::na_if and replace_with_na_all() functions, but (I may be wrong) it seems they do not accept conditions, but they replace specific values in the whole dataframe.
CodePudding user response:
When cyl
equal to 6 cannot be trusted in mtcars
, we can mutate
across
everything
to NA for that condition:
library(tidyverse)
data(mtcars)
as_tibble(mtcars %>% mutate(across(everything(), ~replace(., cyl == 6 , NA))))
# A tibble: 32 × 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA NA NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA NA NA
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 NA NA NA NA NA NA NA NA NA NA NA
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 NA NA NA NA NA NA NA NA NA NA NA
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 NA NA NA NA NA NA NA NA NA NA NA
# … with 22 more rows
# ℹ Use `print(n = ...)` to see more rows
Select only some columns instead of all:
as_tibble(mtcars %>% mutate(across(c(mpg, disp), ~replace(., cyl == 6 , NA))))
# A tibble: 32 × 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA 6 NA 110 3.9 2.62 16.5 0 1 4 4
2 NA 6 NA 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 NA 6 NA 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 NA 6 NA 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 NA 6 NA 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
# ℹ Use `print(n = ...)` to see more rows